Микросхема генератор тональных dtmf сигналов. Изучение приемника и передатчика dtmf сигналов

Тему несложных устройств, решил собрать генератор DTMF сигнала на все той же ATtiny2313. Кто не знает, DTMF (англ.Dual-Tone Multi-Frequency) – это двухтональный многочастотный аналоговый сигнал, используемый для набора телефонного номера. Читать Википедию .

Решение собрать такое устройство продиктовано желанием попробовать реализовать сложные аналоговые сигналы при помощи микроконтроллера. Никакого практического применения для данного устройства не планировалось, но может кому пригодится такое устройство? Пользуйтесь!

Исходник DTMF генератора


Теперь посмотрим, что у нас получилось.

Сигнал формируется при помощи ШИМ и для того чтобы придать ему нужную форму применяется RC-цепочка. В итоге, после RC-цепочки, получаем вот такой сигнал (нажата кнопка 6):

По всей кривой полезного сигнала мы наблюдаем гребенку высокой частоты (частота выше слышимой, так что шума она не будет создавать) – это работа RC-цепочки. Можно линию сделать более плавной, увеличив емкость конденсатора или сопротивление резистора, но в этом случае значительно уменьшиться размах полезного сигнала.

Смотрим спектр сигнала и убеждаемся в наличии двух отдельных частот (частота ШИМ ушла за пределы области отображения), значит все нормально – устройство работает как нужно.

Готовые решения

Для задач генерирования и декодирования DTMF-сигнала существуют готовые решения. Вот пару даташитов на эти микросхемы.

DTMF генератор
- DTMF декодер


P.S. Жалко нет в ATtiny2313 АЦП — можно было еще и декодер DTMF забабахать! Но ничего, буду повторять на меге обязательно приделаю.

(Visited 6 868 times, 1 visits today)

По мере внедрения современных цифровых АТС в телефонных сетях Российской Федерации постепенно распространяется многочастотный способ передачи сигналов набора номера, обозначаемый английской абривиатурой DTMF (Dual-Tone Multiple-Frequency). Иногда для наименования этой системы передачи сигналов набора используется другой англоязычный термин - Touch-None (тоновый набор). Такой способ разработан в 1960 г., но реальное его распространение началось с 80-х годах по мере распространения цифровых (электронных) АТС.

При этом способе передачи сигналов управления каждый многочастотный сигнал цифры номера состоит из двух тональных сигналов в соответствии с рекомендацией Q.23 ITU-T "Технические особенности телефонных аппаратов с тастатурным набором номера".

Частоты DTMF подобраны не гармонически. Это означает, что частоты не имеют отличного от 1 целого делителя. Например, частоты 1200 и 1600 Гц - гармоники частоты 400 Гц (3х400=1200 и 4х400=1600), а частоты 697 и 770 Гц - негармонические.

Каждый сигнал содержит две частоты: одна выбирается из нижней, а вторая - из верхней группы частот.

Соответствие между передаваемой информацией и частотами приведено в таблице на передней панели лабораторной установки.

Уровень передачи в двухчастотной посылке, измеренный на нагрузке 600 Ом, составляет: для нижней группы частот - минус 6дБмО ±2дБ, для верхней группы частот - минус 3 дБмО ±2 дБ. Уровень частоты верхней группы частот в суммарном сигнале на 2 ±1 дБ превышает уровень частоты нижней группы. Суммарный уровень всех частотных составляющих высшего порядка, по крайней мере, на 20 дБ ниже уровня частоты нижней группы.

Условия, при которых должен осуществляться нормальный прием сигналов, следующие: наличие в сигнале двух частот, одна из которых выбрана из нижней группы, а другая - из верхней; частоты не отличаются от своих номинальных значений более чем на 1,8%; уровень каждой из двух частот лежит в пределах от минус 7 до минус 30 дБмО; разность уровней двух частот не превышает 3 дБ; длительность частотного сигнала не менее 40 мс.

Перед включением установки выполнить следующие операции:

Переключатель S6 установить в нижнее положение;

Переключатель S13 установить в верхнее положение;

Выключатели генераторов верхней и нижней групп частот установить в положение "Выкл.";

Переключатель аналогового ключа (АК) установить в положение "Вкл.";

Ручки регулировки выходного напряжения генераторов и резистора R3 повернуть против часовой стрелки до упора.

Формирование сигнала dtmf

1.1 Включить установку.

1.2 Подключить осциллограф к контрольной точке КТ3.

1.3 Включить генератор верхней группы частот, нажатием одной из кнопок переключателя выбрать любую из частот этой группы.

1.4 Вращая ручку регулировки выходного напряжения генератора установить амплитуду сигнала в КТ3 равной 0,5 Вольт.

1.5 Переключить вход осциллографа к контрольной точке КТ4. Повторить операции п.п.1.3, 1.4 для генератора нижней группы частот, установив в КТ4 напряжение 0,5 В.

ПРИМЕЧАНИЕ: в результате выполненных операций на вход сумматора поданы равные по амплитуде сигналы верхней и нижней группы частот. После установки этих уровней ручки регулировки выходного напряжения генераторов зафиксировать.

1.6 Переключить вход осциллографа к контрольной точке КТ7. Вращая ручку резистора (R3) регулировки выходного напряжения формирователя сигналов DTMF, установить напряжение в КТ7 равное 0,5 Вольт.

ПРИМЕЧАНИЕ: в результате выполненных операций на вход приемника подан непрерывный двухтональный сигнал, при этом на индикаторе принятого символа должен индицироваться символ, соответствующий комбинации частот генераторов верхней и нижней групп частот, в соответствии с таблицей. Индикацией принятого и опознанного сигнала является наличие сигнала на выходе STD приемника (свечение светодиода).

      Переключая частоты верхней и нижней групп частот убедиться в соответствии комбинаций этих частот принимаемым символам.

Тональный набор (Dual-tone multi-frequency signaling, DTMF) был разработан компанией Bell Labs в 50-х годах прошлого века для революционного на тот момент времени кнопочного телефона. Для представления и передачи цифровых данных в тоновом режиме используется пара частот (тонов) речевого частотного диапазона. В системе определены две группы из четырех частот, и информация кодируется одновременной передачей двух частот - по одной из каждой группы. Это дает в общей сложности шестнадцать комбинаций для представления шестнадцати разных чисел, символов и букв. В настоящее время DTMF-кодирование используется в широком спектре приложений в области связи и управления, что, например, подтверждается Рекомендацией Q.23 Международного союза электросвязи (МСЭ).

В данной статье описывается схема тонового DTMF-генератора, воспроизводящего все восемь частот и формирующего результирующий выходной двухтоновый сигнал. Рассматриваемая система была построена на базе микросхемы Silego GreenPAK ™ SLG46620V и операционных усилителей Silego SLG88104V. Выдаваемый результирующий сигнал представляет собой сумму двух частот, определяемых строкой и столбцом телефонной клавиатуры.

Предлагаемая схема использует четыре входа для выбора формируемой комбинации частот. Схема также имеет вход разрешения, который запускает генерацию и определяет продолжительность времени передачи сигнала. Частота выходного сигнала генератора соответствует требованиям стандарта МСЭ для DTMF.

Тоновые DTMF-сигналы

DTMF-стандарт определяет кодирование цифр 0-9, букв A, B, C и D и символов * и # в виде комбинации двух частот. Эти частоты разделены на две группы: группа высоких частот и группа низких частот. В таблице 1 показаны частоты, группы и соответствующие представления символов.

Таблица 1. Кодирование сигналов тоновом режиме DTMF

Группа верхних частот

Группа нижних частот

Частоты были выбраны таким образом, чтобы избежать кратных гармоник. Кроме того, их сумма или разность не дают другой DTMF-частоты. Таким образом, удается избежать гармоник или модуляционных искажений.

В стандарте Q.23 указывается, что погрешность каждой передаваемой частоты должна находиться в диапазоне ± 1,8% от номинального значения, а суммарные искажения (в результате гармоник или модуляции) должны быть на 20 дБ ниже основных частот.

Описанный выше результирующий сигнал может быть описан как:

s(t) = Acos(2πfhight)+ Acos(2πflowt),

где fhigh и flow являются соответствующими частотами из групп высоких и низких частот.

На рисунке 1 показан результирующий сигнал для цифры «1». На рисунке 2 показан частотный спектр, соответствующий данному сигналу.

Рис. 1. Тональный DTMF-сигнал

Рис. 2. Спектр тонального DTMF-сигнала

Длительность DTMF-сигналов может быть различной и зависит от конкретного приложения, в котором используется тональное кодирование. Для наиболее распространенных приложений, значения длительностей, как правило, лежат между ручным и автоматическим набором. В таблице 2 показано краткое описание типовой продолжительности времени для двух типов набора.

Таблица 2. Длительность сигналов при тоновом наборе

Тип набора

Группа верхних частот

Группа верхних частот

Ручной набор

Автоматический набор

Для получения большей гибкости DTMF-генератор, предлагаемый в данном руководстве, снабжен входом разрешения, который используется для старта генерации сигнала и определяет его длительность. При этом продолжительность сигнала равна длительности импульса на входе разрешения.

Аналоговая часть схемы DTMF-генератора

Рекомендация МСЭ Q.23 определяет DTMF-сигналы как аналоговые сигналы, созданные двумя синусоидальными волнами. В предлагаемой схеме DTMF-генератора микросхема Silego GreenPAK SLG46620V генерирует сигналы прямоугольной формы с желаемыми DTMF-частотами. Чтобы получить синусоидальные сигналы необходимой частоты и сформировать результирующий сигнал (сумма двух синусоидальных волн), потребуются аналоговые фильтры и сумматор. По этой причине в данном проекте было решено использовать фильтры и сумматор на базе операционных усилителей SLG88104V.

На рисунке 3 показана структура предлагаемой аналоговой части устройства.

Рис. 3. Схема аналоговой обработки для получения DTMF-сигнала

Для получения синусоидальных сигналов из прямоугольных импульсов используются аналоговые фильтры. После выполнения фильтрации происходит суммирование двух сигналов и формирование желаемого выходного двухтонового DTMF-сигнала.

На рисунке 4 представлен результат преобразования Фурье, используемого для получения спектра прямоугольного сигнала.

Рис. 4. Спектр сигнала прямоугольной формы

Как можно заметить, прямоугольный сигнал содержит только нечетные гармоники. Если представить такой сигнал с амплитудой A в виде ряда Фурье, то он будет иметь следующий вид:

Анализ этого выражения позволяет сделать вывод, что если аналоговые фильтры имеют достаточное затухание для гармоник, то вполне реально получить синусоидальные сигналы с частотой, равной частоте исходного прямоугольного сигнала.

Принимая во внимание допуск на уровень помех, определенный в стандарте Q.23, необходимо обеспечить, чтобы все гармоники были ослаблены на 20 дБ или более. Кроме того, любая частота из группы нижних частот должна сочетаться с любой частотой из группы верхних частот. Учитывая эти требования, были разработаны два фильтра, по одному для каждой группы.

В качестве обоих фильтров использовались низкочастотные фильтры Баттерворта. Затухание фильтра Баттерворта порядка n можно рассчитать как:

A(f)[дБ] = 10 log(A(f) 2) = 10log(1+(f/fc) 2n),

где fc - частота среза фильтра, n - порядок фильтра.

Разница в затухании между самой низкой частотой и самой высокой частотой каждой группы может быть не более 3 дБ, поэтому:

A(fHIGHER)[дБ] - A(fLOWER)[дБ] > 3 дБ.

Учитывая абсолютные значения:

A(fHIGHER) 2 / A(fLOWER) 2 > 2.

Кроме того, как мы уже говорили ранее, ослабление гармоник должно составлять 20 дБ или более. При этом наихудшим будет случай самой низкой частоты в группе, потому что ее 3-я гармоника является самой низкочастотной и находится ближе всего к частоте среза фильтра. Учитывая, что 3-я гармоника в 3 раза меньше фундаментальной, фильтр должен отвечать условию (абсолютные значения):

A(3fLOWER) 2 / A(fLOWER) 2 > 10/3.

Если эти уравнения применяются к обеим группам, то используемые фильтры должны быть фильтрами второго порядка. Это означает, что они будут иметь по два резистора и по два конденсатора, если их реализовывать с помощью операционных усилителей. При использовании фильтров третьего порядка чувствительность к допускам компонентов была бы ниже. Выбранные частоты отсечек фильтров составляют 977 Гц для группы нижних частот и 1695 Гц для группы верхних частот. При таких значениях отличия в уровнях сигналов в группах частот согласуются с приведенными выше требованиями, а чувствительность к изменениям частоты отсечки из-за допусков компонентов оказывается минимальной.

Принципиальные схемы фильтров, реализованные с помощью SLG88104V, представлены на рисунке 5. Номиналы первой пары R-C выбраны таким образом, чтобы ограничить выходной ток микросхемы SLG46620V. Второе звено фильтра определяет коэффициент усиления, который составляет 0,2. Амплитуда прямоугольных сигналов задает рабочую точку операционного усилителя на уровне 2,5 В. Нежелательные напряжения блокируются конденсаторами выходных фильтров.

Рис. 5. Принципиальные схемы выходных фильтров

На выходе сигналы фильтров суммируются, и результирующий сигнал представляет собой сумму гармоник, выбранных из группы нижних и верхних частот. Для компенсации затухания фильтра амплитуду выходного сигнала можно подстроить с помощью двух резисторов R9 и R10. На рисунке 6 показана схема сумматора. На рисунке 7 представлена вся аналоговая часть схемы.

Рис. 6. Принципиальная схема сумматора

Рис. 7. Аналоговая часть схемы

Цифровая часть схемы тонального DTMF-генератора

Цифровая часть схемы тонального DTMF-генератора включает целый набор генераторов прямоугольных импульсов - по одному для каждой частоты DTMF. Так как для создания этих генераторов требуется восемь счетчиков, то для их реализации была выбрана микросхема GreenPAK SLG46620V. На выходах цифровой схемы формируются два сигнала прямоугольной формы, по одному на каждую группу частот.

Прямоугольные сигналы формируются с помощью счетчиков и D-триггеров и имеют коэффициент заполнения 50%. По этой причине частота переключения счетчиков в два раза выше требуемой частоты DTMF, а DFF-триггер делит выходной сигнал на два.

Источником тактирования для счетчиков является встроенный RC-генератор 2 МГц, частота которого дополнительно делится на 4 или 12. Делитель выбирается с учетом разрядности и максимального значения каждого счетчика, необходимого для получения конкретной частоты.

Для генерации высоких частот требуется меньшее количество отсчетов, поэтому для их формирования используются 8-битные счетчики, тактируемые от внутреннего RC-генератора, сигнал которого поделен на 4. По той же причине более низкие частоты реализованы с помощью 14-битных счетчиков.

Микросхема SLG46620V имеет только три стандартных 14-битных счетчика, поэтому одна из нижних частот была реализована с помощью 8-разрядного счетчика CNT8. Чтобы число отсчетов укладывалось в диапазоне 0…255, для тактирования данного CNT8 пришлось использовать сигнал RC-генератора, поделенный на 12. Для этой схемы была выбрана частота с наибольшим числом отсчетов, то есть самая низкая частота. Это позволило минимизировать погрешность.

В таблице 3 показаны параметры каждого прямоугольного сигнала.

Таблица 3. Параметры генераторов прямоугольных импульсов

Тактирование

Ошибка частоты [%]

Группа нижних частот

Группа верхних частот

Как видно из таблицы, все частоты имеют погрешность менее 1,8%, поэтому они соответствуют стандарту DTMF. Эти расчетные характеристики, основанные на идеальном значении частоты RC-генератора, могут быть подстроены с учетом измерения выходной частоты RC-генератора.

Хотя в предлагаемой схеме все генераторы работают параллельно, но сигнал только одного генератора из каждой группы будет поступать на выход микросхемы. Выбор конкретных сигналов определяет пользователь. Для этого применяются четыре входа GPIO (два бита для каждой группы) с таблицей истинности, показанной в таблице 4.

Таблица 4. Таблица выбора частот из группы нижних частот

Группа нижних частот

Таблица 5. Таблица выбора частоты из группы верхних частот

Группа верхних частот

На рисунке 8 показана логическая схема генератора прямоугольных сигналов с частотой 852 Гц. Эта схема повторяется для каждой частоты с соответствующими настройками счетчика и конфигурацией LUT.

Рис. 8. Генератор импульсов прямоугольной формы

Счетчик формирует выходную частоту, определяемую его настройками. Эта частота равна удвоенной частоте соответствующего тона DTMF. Параметры конфигурации счетчика показаны на рисунке 9.

Рис. 9. Пример настройки счетчика генератора прямоугольных импульсов

Выходной сигнал счетчика подключается к тактовому входу триггера D-Flip Flop. Так как выход DFF сконфигурирован как инвертированный, то если подключить выход DFF к его входу, то D-триггер преобразуется в T-триггер. Параметры конфигурации DFF можно увидеть на рисунке 10.

Рис. 10. Пример настройки триггера генератора прямоугольных импульсов

Сигнал с выхода DFF поступает на вход таблицы истинности LUT. Таблицы истинности LUT используются для выбора одного сигнала для каждого конкретного сочетания R1-R0. Пример конфигурации LUT представлен на рисунке 11. В данном примере, если на R1 поступает «1», а на R0 подается «0», входной сигнал передается на выход. В остальных случаях на выходе присутствует «0».

Рис. 11. Пример настройки таблицы истинности генератора прямоугольных импульсов

Как было сказано выше, предлагаемая схема имеет вход разрешения Enable. Если на входе разрешения Enable присутствует логическая единица «1», то генерируемые прямоугольные сигналы подаются на пару выходов микросхемы. Длительность передачи равна длительности импульса на входе разрешения. Чтобы реализовать эту функцию, потребовалось еще несколько блоков таблиц истинности LUT.

Для группы верхних частот используется один 4-разрядный LUT и один 2-битный LUT, как показано на рисунке 12.

Рис. 12. Схема выхода группы верхних частот

4-битный LUT1 настроен как логический элемент ИЛИ, поэтому он выдает логическую единицу «1», если на любом из его входов присутствует «1». Таблицы истинности C1/ C0 допускают выбор только одного из генераторов, поэтому 4-разрядный LUT1 определяет какой сигнал поступает на выход. Выход этого LUT подключается к 2-битному LUT4, который передает сигнал только в том случае, если на входе разрешения присутствует логическая «1». На рисунках 13 и 14 показаны конфигурации 4-битного LUT1 и 2-битного LUT4.

Рис. 13. Конфигурация 4-битного LUT1

Рис. 14. 2-битная конфигурация LUT4

Так как 4-битных таблиц истинности LUT больше не было, для группы нижних частот использовались два 3-битных LUT.

Рис. 15. Схема выхода группы нижних частот

Полная внутренняя схема GreenPAK SLG46620V показана на рисунке 16. На рисунке 17 представлена итоговая принципиальная схема DTMF-генератора.

Рис. 16. Блок-схема генератора тональных сигналов DTMF

Рис. 17. Принципиальная схема DTMF-генератора тональных сигналов

Тестирование схемы DTMF-генератора

На первом этапе тестирования предложенного DTMF-генератора было решено проверить частоты всех формируемых прямоугольных сигналов с помощью осциллографа. В качестве примера на рисунке 18 и 19 показаны выходные сигналы прямоугольной формы для частот 852 Гц и 1477 Гц.

Рис. 18. Прямоугольный сигнал 852 Гц

Рис. 19. Прямоугольный сигнал 1477 Гц

Как только частоты всех прямоугольных сигналов были проверены, началось испытание аналоговой части схемы. Были исследованы выходные сигналы для всех комбинаций из группы нижних и верхних частот. В качестве примера на рисунке 20 показана сумма сигналов 770 Гц и 1209 Гц, а на рисунке 21 показана сумма сигналов 941 Гц и 1633 Гц.

Рис. 20. Тональный DTMF-сигнал 770 Гц и 1209 Гц

Рис. 21. Тональный DTMF-сигнал 941 Гц и 1633 Гц

Заключение

В данной статье была предложена схема тонового DTMF-генератора, построенного на базе микросхемы Silego GreenPAK SLG46620V и операционных усилителей Silego SLG88104V. Генератор дает пользователю возможность выбирать комбинации требуемых частот с помощью четырех входов и управлять входом разрешения, который определяет длительность генерации выходных сигналов.

Характеристики микросхемы SLG46620V:

  • Тип: программируемая микросхема смешанных сигналов;
  • Аналоговые блоки: 8-битный АЦП, два ЦАП, шесть компараторов, два фильтра, ИОН, четыре интегрированных генератора;
  • Цифровые блоки: до 18 портов ввода/вывода, матрица соединений и комбинаторная логика, программируемые схемы задержки, программируемый функциональный генератор, шесть 8-битных счетчиков, три 14-битных счетчика, три ШИМ-генератора/компаратора;
  • Коммуникационный интерфейс: SPI;
  • Диапазон напряжений питания: 1,8…5 В;
  • Диапазон рабочих температур: -40…85 °C;
  • Корпусное исполнение: 2 x 3 x 0,55 мм 20-выводной STQFN.

Отличительные особенности

  • Генерация синусоидальных сигналов с использованием широтно-импульсной модуляции (ШИМ)
  • Объединение различных синусоидальных сигналов в один DTMF-сигнал
  • Исходные коды на языках ассемблер и Си
  • Разработан для совместной работы с STK500
  • Размер кода программы 260 байт/размер таблицы констант 128 байт
  • Использование метода табличного преобразования

Введение

Данный документ описывает методику генерации DTMF-сигналов (двутональные многочастотные сигналы) с использованием любого AVR-микроконтроллера, содержащего блок широтно-импульсной модуляции (ШИМ) и статическое ОЗУ. Данные сигналы находят широкое применение в телефонии, где они воспроизводятся при нажатии на кнопки набора номера телефонного аппарата. Для правильной генерации DTMF-сигнала необходимо наложить две частоты вместе: низкую частоту (fb) и высокую частоту (fa). В таблице 1 показано как смешиваются различные частоты для получения DTMF-тонов при нажатии на различные клавиши.


Рисунок 1. Схема генератора DTMF-сигнала

Таблица 1. Матрица формирования тонального сигнала

fb/fa 1209 Гц 1336 Гц 1477 Гц 1633 Гц
697 Гц 1 2 3 A
770 Гц 4 5 6 B
852 Гц 7 8 9 C
941 Гц * 0 # D

В строках таблицы 1 представлены значения низкой частоты, а в столбцах – значения высокой частоты. Например, в матрице показано, что при нажатии на кнопку "5" должны смешиваться частоты fb = 770 Гц и fa = 1336 Гц. В результате сложения двух синусоидальных сигналов разных частот образуется DTMF-сигнал

где отношение амплитуд K=A b /A a исходных сигналов должно отвечать условию

Принцип действия

Помимо общих сведений об использовании широтно-импульсной модуляции далее будет показано как широтно-импульсная модуляция позволяет генерировать синусоидальные сигналы. В следующем параграфе описывается как, используя базовую частоту ШИМ получить различные частоты. После рассмотрения теоретических основ будет дано описание непосредственно генератора DTMF-сигнала. Генерация синусоидальных сигналов

В зависимости от соотношения длительности высокого VH и низкого VL уровней напряжения среднее значение на выходе ШИМ изменяется. Если соотношение между длительностями обоих уровней удерживать постоянным, то в результате будет генерироваться постоянный уровень напряжения VAV. Рисунок 2 показывает сигнал с широтно-импульсной модуляцией.


Рисунок 2. Генерация уровня постоянного напряжения

Уровень напряжения определяется выражением:

(3)

Синусоидальный сигнал может генерирован при условии, что среднее значение напряжения, генерируемого широтно-импульсной модуляцией будет изменяться каждый период ШИМ. Соотношение между высоким и низким уровнями должно задаваться в соответствие с уровнем напряжения синусоидального сигнала при соответствующем времени. На рисунке 3 иллюстрируется данный процесс. Исходные данные для ШИМ вычисляются для каждого ее периода и записываются в таблицу преобразования (ТП).

Рисунок 3 также иллюстрирует зависимость между частотой основного синусоидального сигнала и количеством выборок. Чем выше число выборок (Nc) – тем выше точность моделирования результирующего сигнала:

(4)

Частота ШИМ зависит от разрешающей способности ШИМ. При 8-разрядном разрешении, конечное значение (вершина счета) таймера равно 0xFF (255). Т.к. таймер выполняет счет в прямом и обратном направлениях, то данное значение должно быть удвоено. Поэтому, частота ШИМ может быть вычислена путем деления тактовой частоты таймера f CK на 510. Таким образом, при частоте тактирования таймера 8 МГц результирующая частота ШИМ составит 15.6 кГц.


Рисунок 3. Генерация синусоидального сигнала с использованием ШИМ

Изменение частоты синусоидального сигнала

Предположим, что синусоидальные выборки считываются из таблицы преобразования не последовательно, а через одну. В этом случае при той же частоте чтения выборок будет генерироваться сигнал с удвоенной частотой (см. рисунок 4).


Рисунок 4. Удвоение результирующей частоты (XSW = 2)

По аналогии, если считывать не каждое второе значение, а каждое третье, четвертое, пятое (соответственно, ширина шага 3, 4, 5…) и т.д. можно генерировать Nc-частот в диапазоне . Обратите внимание, что для высоких частот результирующая форма сигнала не будет синусоидальной. Ширину шага по таблице преобразования обозначим как X SW , где

(5)

Вычисление текущей позиции в ТП для следующего периода ШИМ (при переполнении таймера) выполняется с помощью выражения (6). Новое значение в позиции X LUT зависит от его предыдущего состояния в позиции X" LUT с прибавлением ширины шага X SW

(6)

Сложение разных частот для получения DTMF-сигнала

DTMF-сигнал может быть сгенерирован с помощью выражений (1) и (2). Для простоты арифметических действий значение коэффициента К принимается равным 0.75, чтобы арифметическое действие заменить логическими сдвигами. С учетом выражения (6) текущее значение для управления ШИМ может быть вычислено по выражению:

а с учетом, что X LUTa =X" LUTa + X SWa ,X LUTb =X" LUTb + X SWb , окончательно запишем

Реализация DTMF-генератора

В данном приложении рассматривается построение DTMF тонального генератора с использованием выхода 8-разрядной ШИМ (OC1A) и таблицы с 128 выборками значений синусоидальной функции (Nc), каждая из которых задается 7 битами (n). Следующие выражения показывают эту зависимость, а также показывают как вычислить элементы таблицы преобразования:

(9)

Преимуществом использования 7 бит является то, что сумма значений сигналов высокой и низкой частоты имеет размер одного байта. Для поддержки полного набора DTMF-тонов необходимо вычислить 8 значений для каждой DTMF-частоты из таблицы 1 и занести их в таблицу преобразования.

Для достижения более высокой точности выполнено следующее решение: значения, вычисленные по выражению 5 требуют всего 5 байт. Для использования всех 8 байт, что позволит уменьшить погрешность округления, это значение умножается на 8. Указатель на таблицу преобразования записывается таким же способом. Но в этом случае требуется два байта для запоминания 8-кратного значения. Это означает, что необходимо выполнить 3 правосторонних сдвига и операцию модуля по основанию Nc (логическое умножение на Nc-1) перед использованием этих байт как указателя на значения синусоиды в


Рисунок 5. Схема модуля для подключения к STK500

ШИМ-сигнал формируется на выводе OC1A (PD5). Дополнительный выходной фильтр будет способствовать большему соответствию синусоидальной форме сигнала. При уменьшении частоты ШИМ может возникнуть необходимость применения фильтра с более крутой АЧХ для получения хорошего результата.

Подключение клавиатуры показано на рисунке 1. Работа клавиатуры должна быть организована таким образом, чтобы была возможность определения нажатой клавиши. Это может быть выполнено по следующему алгоритму:

  1. Определение строки нажатой клавиши
    • настроить младшую тетраду порта В на выход и установить лог. "0"
    • настроить старшую тетраду порта В на вход с подключением подтягивающих резисторов
    • строка с нажатой кнопкой определяется как разряд старшей тетрады с лог. "0"
  2. Определение столбца нажатой клавиши
    • настроить старшую тетраду порта В на выход и установить лог. "0"
    • настроить младшую тетраду порта В на вход с подключением подтягивающих резисторов
    • столбец с нажатой кнопкой определяется как разряд младшей тетрады с лог. "0"

Прим.: В STK200 между выводами разъема PORTB и выводами микроконтроллера BP5, PB6 и PB7 включены последовательно резисторы (см. схему STK200). Это вызовет проблемы если клавиатура подключена к разъему PORTB.

Рисунок 6 иллюстрирует работу подпрограммы по определению нажатой клавиши. В зависимости от нажатой клавиши определяется длительность интервала. Процедура обработки прерывания использует это значение для вычисления установок ШИМ для двух синусоид DTM-тона. Процедура обработки прерывания показана на рисунках 7 и 8.

Эта процедура вычисляет значение для сравнения с выходом таймера на следующий период ШИМ. Процедура обработки прерываний сперва вычисляет позицию значения следующей выборки в таблице преобразования и считывает сохраненное там значение.

Позиция выборки в таблице преобразования определяется длительностью импульса, а собственно длительность импульса определяется генерируемой частотой.

Окончательное значение, которое записывается в регистр сравнения таймера, определяется с использованием формулы (7), где учитываются значения выборок обеих DTMF-частот.


Рисунок 6. Блок-схема основной программы


Рисунок 7. Блок-схема процедуры обработки прерывания по переполнению таймера


Рисунок 8. Блок-схема процедуры чтения выборки "GetSample"

Публикация: www.cxem.net

Смотрите другие статьи раздела .

Изобретение относится к области генерации цифровыми методами двухтональных частотных (DTMF) сигналов, предназначенных для передачи данных, например, в области телефонии. Достигаемый технический результат - уменьшение количества избыточных схемных элементов, повышение экономической эффективности. Генератор DTMF сигналов, реализующий Способ генерации DTMF сигналов, содержит два накопительных сумматора, два фиксирующих регистра, два запоминающих устройства, итоговый сумматор, цифроаналоговый преобразователь, преобразователь кодов DTMF сигналов в последовательности целых чисел, делитель задающей частоты генератора DTMF сигналов с регулируемым коэффициентом деления, преобразователь кодов DTMF сигналов в код коэффициента деления. 2 с. и 3 з.п. ф-лы, 2 ил.

Изобретение относится к способам генерации цифровыми методами DTMF (двухтональных частотных) сигналов, предназначенным для передачи данных, например, в области телефонии при тонально-частотном наборе номера.Наиболее близким по технической сущности и достигаемому результату к заявляемому способу является способ генерации DTMF сигналов, представленный в патенте США № 5034977 от 04.04.89 г., опубл. 23.07.91 г., М.кл. 5 Н 04 М 1/00.Известный способ генерации DTMF сигналов включает выбор первого и второго кодов углов дискретизации, соответствующих первой и второй частоте составляющих DTMF сигнала, накопительное суммирование отдельно первого и второго кодов углов дискретизации с соответственно периодически фиксирующимися, с периодом, соответствующим тактовой частоте дискретизации, первым и вторым результатами накопительного суммирования, получение первого и второго дискретных значений составляющих DTMF сигнала, хранящихся в адресно расположенных ячейках соответствующих таблиц дискретных значений составляющих DTMF сигнала, путем считывания из соответствующих таблиц по адресам, соответствующим результатам накопительного суммирования кодов углов дискретизации, суммирование первого и второго дискретных значений составляющих DTMF сигнала для получения третьего дискретного значения, соответствующего значению DTMF сигнала.Известный способ генерации DTMF сигналов состоит в следующем: в зависимости от кода DTMF сигнала посредством первого преобразования кодов DTMF сигналов выбирается первый код, определяющий угол дискретизации сигнала с частотой, соответствующей группе верхних частот - столбцов, а посредством второго преобразования кодов DTMF сигналов выбирается второй код, определяющий угол дискретизации сигнала с частотой, соответствующей группе нижних частот - строк, периодически, с периодом, соответствующим тактовой частоте дискретизации, первый код угла дискретизации суммируется в соответствующем накопительном сумматоре и фиксируется в соответствующем регистре, на выходе которого находится результат, значение которого соответствует адресу ячейки таблицы, хранящейся в соответствующем постоянном запоминающем устройстве и в которой находятся соответствующие дискретные значения синусов, определяющих верхнюю частоту DTMF сигнала таким же образом, периодически, с периодом, соответствующим тактовой частоте дискретизации, второй код угла дискретизации суммируется в соответствующем накопительном сумматоре и фиксируется в соответствующем регистре, на выходе которого находится результат, значение которого соответствует адресу ячейки таблицы, хранящейся в соответствующем постоянном запоминающем устройстве и в которой находятся соответствующие дискретные значения синусов, определяющих нижнюю частоту DTMF сигнала, дискретные значения синусов, определяющих верхнюю и нижнюю частоты DTMF сигнала, суммируются в итоговом сумматоре, определяя дискретное значение сигнала DTMF и через цифроаналоговое преобразование подаются на выход, формируя ступенчато-синусоидальный DTMF сигнал, соответствующий входному коду DTMF сигнала.Известный способ является низкоэффективным, что обусловлено его низкими технико-экономическими показателями и технологическими показателями.Технико-экономические показатели определяются необходимыми затратами при реализации способа для достижения необходимых параметров, предъявляемых к DTMF сигналам. В известном способе точность генерации частот зависит от разрядности кода, соответствующего углу дискретизации, что требует наличия большой разрядности накопительного сумматора, что затрудняет реализацию способа простыми аппаратными средствами. А именно, код угла дискретизации в известном способе определяется выражениемK=(F/F т)32..., (1.1)где К - код, соответствующий углу дискретизации;F - генерируемая частота;F т - частота дискретизации.Как видно, точность генерируемой частоты однозначно зависит от отношения генерируемой и частоты дискретизации.Для достижения необходимой точности генерируемой частоты, а именно, не хуже 1,5%, очевидно, требуется не менее двух значащих цифр после запятой, что требует представления данных с разрядностью для нижних частот не менее 8 бит, а для верхних частот не менее 9 бит, а для накопительного суммирования соответственно не менее 12 бит, что ведет к увеличению числа комплектующих элементов устройств, реализующих известный способ. Известные устройства для реализации известного способа, а именно сумматоры, регистры, постоянные запоминающие устройства имеют входы/выходы с разрядностью 4 и 8 бит. Поэтому при большей разрядности требуются дополнительные технико-экономические затраты при реализации равнофункциональных устройств. При этом в известном способе уменьшение количества разрядов после запятой приводит к погрешности частоты, превышающей допустимую.Технологические показатели определяются универсальностью и унификацией при реализации способа, например, современный уровень техники, предполагающий уменьшения материалоемкости, комплектующих элементов и увеличения многофункциональности устройств, требует использования микроконтроллеров. Широкораспространенные микроконтороллеры, применяемые в телефонии и телеметрических измерениях, используют 8-битовые данные и 8-битовое арифметико-логическое устройство, что требует при реализации известного способа дополнительных вычислительных операций, связанных с суммированием данных, с разрядностью более 8 бит, и анализом сигнала переноса, что увеличивает число команд и, соответственно, тактовую частоту микроконтроллера, а также объем оперативной памяти микроконтроллера, что ведет к удорожанию устройств, использующих известный способ для генерации сигналов DTMF. Данное заключение приведено при анализе применения известного способа в тональном номеронабирателе на базе микроконтроллеров производства фирм Atmel, Microchip tnс и др.Таким образом, известный способ принципиально низкоэффективен, что обусловлено низкими технико-экономическими показателями, выраженными в увеличенной материалоемкости, энергопотребления, и низкими технологическими показателями, так как имеет ограничения при использовании способа, в том числе в составе микроконтроллеров широкого применения, что выражается в повышенных технических характеристиках, предъявляемых к микроконтроллерам, что снижает их многофункциональность.Наиболее близким по технической сущности и достигаемому результату к заявляемому генератору DTMF сигналов является генератор DTMF сигналов, представленный в патенте США № 5034977 от 04.04.89 г., опубл. 23.07.91 г., М.кл. 5 Н 04 М 1/00.Известный генератор DTMF сигналов включает: первый накопительный сумматор, первый фиксирующий регистр, первое запоминающее устройство, второй накопительный сумматор, второй фиксирующий регистр, второе запоминающее устройство, итоговый сумматор, цифроаналоговый преобразователь, причем выход первого накопительного сумматора соединен со входом первого фиксирующего регистра, выход первого фиксирующего регистра соединен со входом первого запоминающего устройства, а также с одним из входов первого накопительного сумматора, выход первого запоминающего устройства соединен с одним из входов итогового сумматора, выход второго накопительного сумматора соединен со входом второго фиксирующего регистра, выход второго фиксирующего регистра соединен со входом второго запоминающего устройства, а также с одним из входов второго накопительного сумматора, выход второго запоминающего устройства соединен с другим входом итогового сумматора, выход итогового сумматора соединен со входом цифроаналогового преобразователя, выход которого является выходом генератора DTMF сигналов.Известный генератор содержит также первый преобразователь кодов DTMF сигналов в соответствующие коды углов дискретизации, соответствующие верхним частотам DTMF сигнала, второй преобразователь кодов DTMF сигналов в соответствующие коды углов дискретизации, соответствующие нижним частотам DTMF сигнала, причем выход первого преобразователя кодов DTMF сигналов соединен с другим входом первого накопительного сумматора, выход второго преобразователя кодов DTMF сигналов соединен с другим входом второго накопительного сумматора, входы первого и второго преобразователей кодов DTMF сигналов являются входами генератора DTMF сигналов, а тактовые входы первого и второго фиксирующих регистров соединены между собой и являются входом тактовой частоты дискретизации генератора DTMF сигналов.Известный генератор DTMF сигналов обеспечивает низкий технический результат, обусловленный избыточным количеством схемных элементов, связанных с различной, а также избыточной разрядностью одинаково функциональных элементов. Кроме того, реализация известного технического решения эффективно возможна в виде отдельной интегральной микросхемы, однако это требует организации специализированного производства, но учитывая, что генераторы DTMF сигналов являются частью многофункциональных устройств (телефонные аппараты с расширенными возможностями, устройства передачи телеметрической информации по телефонным линиям и т.д.), реализуемых в настоящее время на базе универсальных микроконтроллеров, производство отдельных микросхем DTMF сигналов экономически неэффективно.В основу заявляемого технического решения поставлена задача создания способа генерации сигналов DTMF с использованием генератора сигналов DTMF, в котором путем изменения условий и последовательности выполнения операций осуществляется реализация способа с высокими технико-экономическими показателями, обусловленными уменьшением разрядности однотипных операций, высокими технологическими показателями, при реализации способа, как в схемотехническом исполнении простыми аппаратными средствами, так и в составе многофункционального микроконтроллера, связанная с повторяемостью, при реализации, одинаково функциональных элементов.В основу технического решения поставлена задача создания генератора DTMF сигналов, в котором путем введения новых элементов и выполнения новых связей повышается технический результат, связанный с уменьшением количества избыточных схемных элементов, и соответственно повышается экономическая эффективность, связанная с возможностью реализации заявляемого технического решения широкодоступными средствами.Поставленная задача решается тем, что в известном способе генерации DTMF сигналов, включающем выбор первого и второго кодов углов дискретизации, соответствующих первой и второй частоте составляющих DTMF сигнала, накопительное суммирование отдельно первого и второго кодов углов дискретизации с соответственно периодически фиксирующимися, с периодом, соответствующим тактовой частоте дискретизации, первым и вторым результатами накопительного суммирования, получение первого и второго дискретных значений составляющих DTMF сигнала, хранящихся в адресно расположенных ячейках соответствующих таблиц дискретных значений составляющих DTMF сигнала, путем считывания из соответствующих таблиц по адресам, соответствующим результатам накопительного суммирования кодов углов дискретизации, суммирование первого и второго дискретных значений составляющих DTMF сигнала для получения третьего дискретного значения, соответствующего значению DTMF сигнала, новым является то, что получение первого и второго дискретных значений составляющих DTMF сигнала, хранящихся в адресно расположенных ячейках соответствующих таблиц дискретных значений составляющих DTMF сигнала, производится путем считывания из соответствующих таблиц по адресам, соответствующим результатам накопительного суммирования соответственно первой и второй последовательностей целых чисел, усредненное значение которых соответствует кодам углов дискретизации, соответствующих составляющим DTMF сигнала.Кроме того, усредненное значение последовательности целых чисел, формирующих результат накопительного суммирования, может быть средним арифметическим этих чисел.Кроме того, периодическое фиксирование первого и второго результатов накопительного суммирования может быть с периодом, соответствующим тактовой частоте дискретизации, различной для разных DTMF сигналов.Поставленная задача решается также тем, что в известном генераторе DTMF сигналов, включающем первый накопительный сумматор, первый фиксирующий регистр, первое запоминающее устройство, второй накопительный сумматор, второй фиксирующий регистр, второе запоминающее устройство, итоговый сумматор, цифроаналоговый преобразователь, причем выход первого накопительного сумматора соединен со входом первого фиксирующего регистра, выход первого фиксирующего регистра соединен со входом первого запоминающего устройства, а также с одним из входов первого накопительного сумматора, выход первого запоминающего устройства соединен с одним из входов итогового сумматора, выход второго накопительного сумматора соединен со входом второго фиксирующего регистра, выход второго фиксирующего регистра соединен со входом второго запоминающего устройства, а также с одним из входов второго накопительного сумматора, выход второго запоминающего устройства соединен с другим входом итогового сумматора, выход итогового сумматора соединен со входом цифроаналогового преобразователя, выход которого является выходом генератора DTMF сигналов, новым, согласно изобретению, является то, что генератор DTMF сигналов дополнительно содержит преобразователь кодов DTMF сигналов в последовательности целых чисел, делитель задающей частоты генератора DTMF сигналов с регулируемым коэффициентом деления, преобразователь кодов DTMF сигналов в код коэффициета деления, причем первый выход преобразователя кодов DTMF сигналов в последовательности целых чисел соединен с другим входом первого накопительного сумматора, второй выход преобразователя кодов DTMF сигналов в последовательности целых чисел соединен с другим входом второго накопительного сумматора, выход делителя задающей частоты генератора DTMF сигналов с регулируемым коэффициентом деления соединен с тактовым входом преобразователя кодов DTMF сигналов в последовательности целых чисел, а также с тактовым входом первого фиксирующего регистра и тактовым входом второго фиксирующего регистра, выход преобразователя кодов DTMF сигналов в код коэффициета деления соединен со входом установки коэффициента деления делителя задающей частоты генератора DTMF сигналов, вход делителя задающей частоты генератора DTMF сигналов с регулируемым коэффициентом деления является входом задающей частоты генератора DTMF сигналов, вход преобразователя кодов DTMF сигналов в код коэффициента деления соединен со входом преобразователя кодов DTMF сигналов в последовательности целых чисел и является входом генератора DTMF сигналов.Кроме того, преобразователь кодов DTMF сигналов в последовательности целых чисел может быть выполнен в виде управляемого программируемого запоминающего устройства, память которого состоит из, соответствующих количеству DTMF сигналов, областей памяти, состоящих из соответствующих длине последовательности целых чисел, ячеек памяти, выполненных так, что в одной половине ячейки памяти хранится число, относящееся к первой последовательности целых чисел, а в другой половине ячейки памяти хранится число, относящееся, соответственно, к другой последовательности целых чисел, являющихся слагаемыми соответствующих накопительных сумматоров, а управление программируемым запоминающим устройством выполнено с возможностью раздельного управления выбором области памяти и отдельной ячейки памяти.Новые признаки способа генерации DTMF сигналов и генератора DTMF сигналов в совокупности с известными признаками этих объектов обеспечивают новые технические свойства объектов, и, как следствие этих свойств, обеспечивается новый необходимый технический результат.Причинно-следственная связь между совокупностью признаков заявляемого способа и достигаемым техническим результатом поясняется следующим.Для раскрытия сути предлагаемого технического решения удобными будут следующие выкладки:y(P)=sin(n) (1.2),где y(P)- дискретное значение функции синуса;=wT=27F/Fr (1.3)- угол дискретизации, измеряемый в радианах;n - порядковый номер выборки - дискрета;F т =F OSC /kd - тактовая частота дискретизации, где F OSC - задающая частота устройства;kd - регулируемый коэффициент деления.Тогда=2FК D /F OSC . (1.4)Как общеизвестно, функция синуса периодическая с периодом 2. Чтобы преобразовать угол дискретизации из радиан в относительные единицы и получить код угла дискретизации, разбиваем весь период на m частей, где m - целое двоичное число. Таким образом, получим одну минимальную дискретную часть периода:=2/m. (1.5)Код угла дискретизации - это относительное значение угла дискретизации в соответствии с одной частью периода , а именно,К=/=2F/F т:2P/m=Fm/F т. (1.6)Например, для генерируемых частот 1477 Гц и 697 Гц (соответствует коду DTMF сигнала “3”), при m=64, и тактовой частоты F т =32768 ГцК 697 =1,36;K l477 =2,88.Очевидно, что для двоичного отображения кода угла дискретизации К 697 =1,36 в соответственно 136 требуется 8 бит (1281+640+320+160+81+40+20+10), а К 1477 =2,88 в соответственно 288 требуется 9 бит (2561+1280+640+321+160+80+40+ 20+10).При этом для накопительного суммирования соответственно в двоичном предствлении требуется 12 бит, что определило вышеописанные недостатки известного решения.Предлагаемое техническое решение определяет, например, число 1,36 как усредненное значение последовательности целых чисел 1 и 2, а именно 1,36=(1х+2у)/(х+у), где х и у - соответственно количество чисел 1 и 2, периодически повторяющихся с периодом (х+у).Значение кода угла дискретизации состоит из целой части Ц и дробной, т.е. например, 1,36=1+0,36. Относительная точность такой замены в соответствии с выражением (1.7)=К/Ц (1.7)повышается с увеличением целой части значения кода угла дискретизации. Например, для генерируемой частоты 697 Гц, m=64, и тактовой частоты F т =32768 Гц погрешность замены К 697 =1,36 на значения чисел 1 и 2 соответственно 36 и 32%.В то же время, если увеличить значение m=256, то погрешность замены К 697 =5,45 на значения чисел 5 и 6 соответственно уменьшается 9 и 10%.При этом погрешность генерируемой частоты, например, при замене К 697 =5,45 на значения чисел 5 и 6 при периоде повторения, равном 16, 5,45=(5х+6у)/(х+у),где (х+у)=16.Решая уравнение, получим х=9, у=7, т.е. из шестнадцати операций накопительного суммирования девять раз суммируется слагаемое 5 и семь раз слагаемое 6, при этом фактически К 697 =5,4375, подставляя это значение в выражение (1.6) для m=256, F т =32768 Гц, определим фактическое расчетное значение генерируемой частоты F=696 Гц, при этом погрешность оставила 0,1%.Таким образом, накопительное суммирование последовательности целых чисел, усредненное значение которых соответствует соответствующим углам дискретизации, позволяет достигнуть высоких технико-экономических показателей за счет уменьшения разрядности операций накопительного суммирования, обусловленных возможностью варьировать составляющими вышеприведенных выражений, и соответственно уменьшения разрядности устройств, реализующих предлагаемый способ, что ведет к уменьшению аппаратных и энергетических затрат при реализации способа, и обеспечить высокие технологические показатели предлагаемого способа при использовании в многофункциональных устройствах, обусловленных пониженными техническими требованиями.Причинно-следственная связь между совокупностью признаков заявляемого технического решения и достигаемым техническим результатом поясняется следующим.Высокий технический результат генератора DTMF сигналов обеспечивается введением новых элементов преобразователя кодов DTMF сигналов в последовательности целых чисел, делителя задающей частоты генератора DTMF сигналов с регулируемым коэффициентом деления, преобразователя кодов DTMF сигналов в код коэффициента делителя, которые обеспечивают реализацию способа схемотехническими элементами с одинаковой разрядностью, не превышающей 8-бит, при этом отсутствует избыточность элементов, необходимых для решения нескольких задач, например, и для фиксирования результата накопительного суммирования, и для адресации соответствующего запоминающего устройства используется одинаковое количество разрядов, реализуемых не более чем 8-разрядным регистром, который может быть выполнен общедоступными средствами в виде одной микросхемы либо, в микропроцессорном исполнении, одной ячейкой памяти.Кроме того, реализация накопительных сумматоров может быть выполнена в виде одинаковых устройств, с одинаковой разрядностью, в виде общедоступных микросхем сумматоров, оперирующих с 4-разрядными слагаемыми.Конечно, подразумевается, что числа и соответственно устройства, формирующие вышеописанные последовательности целых чисел, совокупность которых определяет соответствующие коды углов дискретизации, могут быть и с другой разрядностью, но наиболее оптимальные, с точки зрения выполнения поставленных заявляемым решением целей, являются 4-разрядные числа.Кроме того, высокий технический результат обеспечивается также при реализации предлагаемого технического решения в составе микроконтроллеров, где система команд микроконтроллеров обязательно включает в себя команды, оперирующие с 4-разрядными числами - полубайтами.Таким образом, заявляемое техническое решение генератора DTMF сигналов позволяет обеспечить высокий технический результат, связанный с уменьшением количества схемных элементов, а также обеспечивает универсальность при реализации генератора DTMF сигналов как общедоступными аппаратными средствами, так и в составе многофункциональных микроконтроллеров, что определяет высокую экономическую эффективность технического решения.Изобретение поясняется чертежом, где на фиг.1 функционально изображен генератор DTMF сигналов, реализующий способ генерации DTMF сигналов.Генератор DTMF сигналов включает преобразователь 1 кодов DTMF сигналов в последовательности целых чисел, делитель 2 задающей частоты генератора DTMF сигналов с регулируемым коэффициентом деления, преобразователь 3 кодов DTMF сигналов в код коэффициент деления, первый накопительный сумматор 4, первый фиксирующий регистр 5, первое запоминающее устройство 6, второе запоминающее устройство 7, второй фиксирующий регистр 8, второй накопительный сумматор, итоговый сумматор 10, цифроаналоговый преобразователь 11.Работа генератора DTMF сигналов иллюстрируется на примере реализации способа генерации DTMF сигналов.Предварительно на основании выражений (1.4, 1.6) и технических данных, в частности задающей частоты устройства, где будет реализован предлагаемый способ, рассчитываются последовательности целых чисел, определяющие соответствующие коды углов дискретизации, и коды коэффициентов деления для делителя 2 задающей частоты генератора DTMF сигналов с регулируемым коэффициентом деления, которые записываются в соответствующие ячейки областей памяти преобразователя 1 кодов DTMF сигналов в последовательности целых чисел и преобразователя 3 кодов DTMF сигналов в коды коэффициентов деления, также предварительно рассчитывают дискретные значения соответствующих функций синуса, количество которых определяется числом дискретов т, и записывают в соответствующие запоминающие устройства 6 и 7, при генерации DTMF сигнала, на входах преобразователя 1 и преобразователя 3, являющихся входами генератора, на время действия DTMF сигнала, установится код генерируемого DTMF сигнала, на выходе преобразователя 3 установится код, определяющий коэффициент деления для делителя 2, при этом на выходе делителя 2 установится тактовая частота дискретизации периодически, с периодом, соответствующим тактовой частоте дискретизации, с первого выхода преобразователя 1 будут поступать на вход первого накопительного сумматора 4 двоичные числа, входящие в первую последовательность целых чисел, а со второго выхода преобразователя 1 будут поступать на вход второго накопительного сумматора 9 двоичные числа, входящие во вторую последовательность целых чисел, соответствующих составляющим DTMF сигнала, результаты накопительного суммирования подаются с выходов накопительных сумматоров на входы соответствующих фиксирующих регистров 5 и 8, с выходов фиксирующих регистров 5 и 8 результаты накопительного суммирования, с периодом, соответствующим тактовой частоте дискретизации, поступают на другие входы соответствующих накопительных сумматоров 4 и 9, а также на входы соответствующих запоминающих устройств 6 и 7, устанавливая адреса дискретных значений синусов соответствующих составляющих DTMF сигнала, с выходов запоминающих устройств 6 и 7 дискретные значения соответствующих составляющих DTMF сигнала поступают на соответствующие входы итогового сумматора 10, на выходе которого образуется дискретный двоичный DTMF сигнал, который поступает на вход цифроаналогового преобразователя 11, на выходе которого образуется ступенчатый синусоидальный DTMF сигнал, соответствующий входному коду DTMF сигнала.Преобразователь 1 кодов DTMF сигналов в последовательности целых чисел (фиг.1) может быть выполнен в виде, изображенном на фиг.2, где преобразователь кодов DTMF сигналов в последовательности целых чисел включает устройство управления 12, программируемое запоминающее устройство 13.Работа генератора DTMF сигналов иллюстрируется далее на конкретном примере реализации заявляемого способа в телефонном тонально-частотном номеронабирателе.Предварительно на основании выражений (1.4, 1.6) и технических данных рассчитываются последовательности целых чисел, определяющие соответствующие коды углов дискретизации, и коды коэффициентов деления для делителя 2 задающей частоты генератора DTMF сигналов с регулируемым коэффициентом деления. Учитывая, что реализация способа включает однотипные расчеты, то для иллюстрации работы в конкретном примере приводится реализация способа для генерации DTMF сигнала, соответствующего нажатию клавиши “7” в составе тонально-импульсного номеронабирателя. В качестве задающей частоты генератора установлена кварцевая частота, наиболее распространенная в телефонной технике, а именно F OSC =3579545 Гц. Нажатию клавиши “7” сответствует сигнал DTMF с верхней (столбцы) частотой 1209 Гц и нижней (строки) частотой 852 Гц. Так как DTMF сигнал одновременно передает две частоты, то коэффициенты деления рассчитывают для большей - верхней частоты так, чтобы соответствующий код угла дискретизации в соответствии с выражением (1,6) был близок к максимальному значению - 16, что реализуется не более чем 4-битами данных. Таким образом, при F OSC =3579545 Гц, числе дискретных значений синусов m=128 рассчитанные значения коэффициента деления для делителя 2 задающей частоты генератора DTMF сигналов с регулируемым коэффициентом деления K D =240=460, при этом соответствующие коды углов дискретизации для верхней частоты K 1209/852 =10,376, для нижней частоты К 852/1209 =7,312.Согласно изобретению коды углов дискретизации заменяем на последовательности целых чисел соответственно 10/11 и 7/8.10,375=(10х+11у)/(x+у), при этом фактически K 1209 / 852 =10,3757,312=(7х+8у)/(x+у), при этом фактически K 952/1209 =7,313,при (х+у)=16.Таким образом, 10,375 заменяется на периодически повторяющуюся последовательность целых чисел 10 по 10 раз и 11 по 6 раз, а 7,312 заменяется как 7 по 11 раз и 8 по 5 раз.Область памяти для кода DTMF сигнала “7” в двоичном представлении выглядит следующим образом:
Таким образом рассчитывают шестнадцать таблиц, соответствующих кодам DTMF сигналов, а именно 0, 1, 2...9, *, #, А, В, С, D, и предварительно записывают в память программируемого запоминающего устройства 13 (преобразователь кода символа DTMF в последовательности целых чисел).При нажатии на клавишу, например, “7” на входе генератора на время действия DTMF сигнала устанавливается двоичный код DTMF сигнала “7” (0111), преобразователь 3 кода DTMF сигнала в коэффициент деления преобразует код DTMF сигнала в код коэффициента деления kd для делителя 2 задающей частоты генератора с регулируемым коэффициентом деления, на выходе делителя 2 установится тактовая частота дискретизации F т =F OSC /K D . Код DTMF сигнала также поступает на адресные входы старших разрядов программируемого запоминающего устройства 13 (преобразователь кодов DTMF сигналов в последовательности целых чисел) и присутствует там в течение времени действия DTMF сигнала. Управляемое устройство 12, выполненное, например, в виде счетчика (преобразователь кодов DTMF сигналов в последовательности целых чисел), под воздействием тактовых сигналов с частотой т циклически изменяет свое значение на параллельных выходах последовательно от 0000 до 1111, изменяя соответственно значения адресных входов младших разрядов программируемого запоминающего устройства 13 (преобразователь кодов DTMF сигналов в последовательности целых чисел), на выходе программируемого запоминающего устройства 13с тактовой частотой дискретизации появляются 8-разрядные (байтовые) числа, при этом в соответствии с таблицей 1 старшие четыре разряда (старший полубайт) формируют последовательность целых чисел, совокупность которых, а именно, среднее арифметическое, определяет код угла дискретизации, соответствующий верхней (столбцы) частоте, а младшие четыре разряда (младший полубайт) формируют последовательность целых чисел, совокупность которых, а именно, среднее арифметическое, определяет код угла дискретизации, соответствующий нижней (строки) частоте, четырехразрядные данные, в соответствии с таблицей 1, с выхода программируемого запоминающего устройства 13 (преобразователь кодов DTMF сигналов в последовательности целых чисел) раздельно поступают на входы соответствующих накопительных сумматоров 4 и 9, на выходах соответствующих сумматоров 4 и 9 данные изменяются с тактовой частотой дискретизации от 0 до m (в данном случае m=128), определяя и фиксируя посредством фиксирующих регистров 5 и 8 адреса для запоминающих устройств 6 и 7, в которые соответственно записаны двоичные дискретные значения соответствующих синусоидальных составляющих DTMF сигнала, с выходов запоминающих устройств 6 и 7 двоичные дискретные значения соответствующих синусоидальных составляющих DTMF сигнала поступают на соответствующие входы итогового сумматора 10, на выходе которого формируются двоичные дискретные значения DTMF сигнала, которые далее поступают на вход цифроаналогового преобразователя 11, на выходе которого формируется ступенчатый синусоидальный DTMF сигнал.Генератор DTMF сигналов может быть реализован на базе общеизвестных технических средств, описанных, например, в: Применение интегральных микросхем в электронной вычислительной технике. Справочник / Под ред. Б.Н. Файзулаева, Б.В. Тарабрина. - М.: Радио и связь, 1986. При этом преобразователь 3 кодов DTMF сигналов в коды коэффициентов деления может быть выполнен, например, в виде микросхемы постоянного запоминающего устройства 155РЕ 3 (с. 343), реализация регистров описана на с. 108, реализация накопительных сумматоров описана на с. 114.Заявляемый способ и генератор DTMF сигналов также реализованы на базе технических средств фирмы Microchip Inc. (8-разрядных однокристальных микроконтроллеров типа pic16f628), в составе импульсно-тонального телефонного номеронабирателя “Кадран - НКТ - 01” производства фирмы “Кадран” (Украина, г. Запорожье). Система команд и внутреннее устройство узлов микроконтроллера описаны в: Прокопенко Б.Я. Однокристальные микроконтроллеры. Додэка, 2000, ISBN8-87835-056-4.Описание параметров DTMF сигнала приведено, например, в: Интегральные микросхемы: Микросхемы для телефонии. Вып.1. - М.: Додэка, 1994, 256 с. - ISBN-5-87835-003-3., с. 12, 13.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ генерации двухтональных частотных (DTMF) сигналов, включающий выбор первого и второго кодов углов дискретизации, соответствующих первой и второй частотам составляющих DTMF сигнала, накопительное суммирование отдельно первого и второго кодов углов дискретизации с соответственно периодически фиксирующимися периодом, соответствующим тактовой частоте дискретизации, первым и вторым результатами накопительного суммирования, получение первого и второго дискретных значений составляющих DTMF сигнала, хранящихся в адресно расположенных ячейках соответствующих таблиц дискретных значений составляющих DTMF сигнала, путем считывания из соответствующих таблиц по адресам, соответствующим результатам накопительного суммирования кодов углов дискретизации, суммирование первого и второго дискретных значений составляющих DTMF сигнала для получения третьего дискретного значения, соответствующего значению DТМF сигнала, отличающийся тем, что получение первого и второго дискретных значений составляющих DTMF сигнала, хранящихся в адресно расположенных ячейках соответствующих таблиц дискретных значений составляющих DTMF сигнала, производится путем считывания из соответствующих таблиц по адресам, соответствующим результатам накопительного суммирования соответственно первой и второй последовательностей целых чисел, усредненное значение которых соответствует кодам углов дискретизации, соответствующих составляющих DTMF сигнала.2. Способ по п.1, отличающийся тем, что усредненное значение последовательности целых чисел, формирующих результат накопительного суммирования, является средним арифметическим этих чисел.3. Способ по п.1, отличающийся тем, что периодическое фиксирование первого и второго результатов накопительного суммирования производится с периодом, соответствующим тактовой частоте дискретизации, различной для разных DТМF сигналов.4. Генератор DТМF сигналов, включающий первый накопительный сумматор, первый фиксирующий регистр, первое запоминающее устройство, второй накопительный сумматор, второй фиксирующий регистр, второе запоминающее устройство, итоговый сумматор, цифроаналоговый преобразователь, причем выход первого накопительного сумматора соединен со входом первого фиксирующего регистра, выход первого фиксирующего регистра соединен со входом первого запоминающего устройства, а также с одним из входов первого накопительного сумматора, выход первого запоминающего устройства соединен с одним из входов итогового сумматора, выход второго накопительного сумматора соединен со входом второго фиксирующего регистра, выход второго фиксирующего регистра соединен со входом второго запоминающего устройства, а также с одним из входов второго накопительного сумматора, выход второго запоминающего устройства соединен с другим входом итогового сумматора, выход итогового сумматора соединен со входом цифроаналогового преобразователя, выход которого является выходом генератора DТМF сигналов, отличающийся тем, что генератор DTMF сигналов дополнительно содержит преобразователь кодов DTMF сигналов в последовательности целых чисел, делитель задающей частоты генератора DTMF сигналов с регулируемым коэффициентом деления, преобразователь кодов DTMF сигналов в код коэффициента деления, причем первый выход преобразователя кодов DTMF сигналов в последовательности целых чисел соединен с другим входом первого накопительного сумматора, второй выход преобразователя кодов DTMF сигналов в последовательности целых чисел соединен с другим входом второго накопительного сумматора, выход делителя задающей частоты генератора DTMF сигналов с регулируемым коэффициентом деления соединен с тактовым входом преобразователя кодов DTMF сигналов в последовательности целых чисел, а также с тактовым входом первого фиксирующего регистра и тактовым входом второго фиксирующего регистра, выход преобразователя кодов DTMF сигналов в код коэффициента деления соединен со входом установки коэффициента деления делителя задающей частоты генератора DTMF сигналов, вход делителя задающей частоты генератора DTMF сигналов с регулируемым коэффициентом деления является входом задающей частоты генератора DТМF сигналов, вход преобразователя кодов DTMF сигналов в код коэффициента деления соединен со входом преобразователя кодов DTMF сигналов в последовательности целых чисел и является входом генератора DTMF сигналов.5. Генератор DTMF сигналов по п.4, отличающийся тем, что преобразователь кодов DTMF сигналов в последовательности целых чисел выполнен в виде управляемого программируемого запоминающего устройства, память которого состоит из соответствующих количеству DТМF сигналов, областей памяти, состоящих из соответствующих длине последовательности целых чисел ячеек памяти, выполненных так, что в одной половине ячейки памяти хранится число, относящееся к первой последовательности целых чисел, а в другой половине ячейки памяти хранится число, относящееся соответственно к другой последовательности целых чисел, являющихся слагаемыми соответствующих накопительных сумматоров, а управление программируемым запоминающим устройством выполнено с возможностью раздельного управления выбором области памяти и отдельной ячейки памяти.