Типы экранов на смартфонах. Какой экран лучше для смартфона – подробное описание всех типов экранов

Сейчас многие смартфоны в плане аппаратной части похожи друг на друга. Одинаковые процессоры, графические ускорители, объем оперативной и долговременной памяти – все, как одно на подбор. И порой решающим фактором, который перевешивает наше решение в сторону определенной модели, становится экран устройства. Поэтому сегодня я хочу рассказать все, что знаю об этом сам. Надеюсь, что информация будет полезна тем, кто учитывает характеристики дисплея при покупке смартфона.

Основная терминология

  • LCD (Liquid Crystal Display) - жидкокристаллический дисплей.
  • TFT (Thin Film Transistor) - технология изготовления матриц, основанная на использовании тонкопленочных транзисторов.
  • IPS (In-Plane Switching) - улучшенная по характеристикам технология изготовления матриц, основанная на использовании тонкопленочных транзисторов.
  • OLED (Organic Light-Emitting Diode) - технология изготовления матриц, основанная на использовании полупроводниковых приборов.
  • AMOLED (Active Matxrix Organic Light-Emitting Diode) - тип активной матрицы, основанный на использовании одиночных транзисторов.
  • Super AMOLED - улучшенная модификация матрицы AMOLED, в которой отсутствует воздушная прослойка между сенсором и экраном.

Матрицы

Чаще всего именно этот показатель красуется на сайтах интернет-магазинов МТС, Связного, Билайна, Мегафона и других компаний. Так и пишется: “тип матрицы”. А за двоеточием скрываются очень страшные английские аббревиатуры. Такие, например, как TFT TN , IPS , AMOLED и так далее. А теперь давайте разложим все из этой области, как говорится, по полочкам.

Прежде всего я хочу упомянуть о разделении матриц на жидкокристаллические и светодиодные. К первым относятся TFT TN и IPS , ко вторым – AMOLED и SuperAMOLED . Что представляют собой матрицы типа TFT ? С английского языка эта аббревиатура расшифровывается как Thin -Film Transistor . С точки зрения схемо- и электротехники, это – тонкопленочные транзисторы. Их в смартфонах используют для того, чтобы управлять работой субпикселей. Считается, что базовые принципы технологии TFT применяются абсолютно во всех видах матриц. Только где-то в большей, а где-то – в меньшей степени. Тем не менее, этот вопрос остается открытым, о чем пользователи, собственно, и спорят уже не первый год.

До недавнего времени производители TFT -матриц для соответствующих операций использовали аморфный кремний. Но, как известно, прогресс не стоит на месте: в ходу уже поликристаллический кремний, и благодаря его использованию, такие матрицы носят новое название (LTPS -TFT ). Сразу следует отметить, что основным преимуществом подобной матрицы является снижение размеров транзисторов и, как следствие, уменьшение энергетического потребления. Несложно сделать логичный вывод: этот факт позволяет добиться более высокого значения PPI (плотность пикселей).

Это познавательно: как вообще работают матрицы? Первично к молекулам жидких кристаллов прикладывается ток. Это приводит к тому, что задается угол поляризации света. К слову, угол непосредственно влияет на то, какой уровень яркости будет иметь каждый отдельный субпиксель. На пути поляризованного света стоит специальный светофильтр. Проходя через него, свет меняет длину волны, вследствие чего меняется цвет, прикладываемый позднее к субпикселю (при подсветке экрана).

Первый тип матрицы, установленный в смартфоне, носит название TN . Опорные сведения о матрице следующие: малый угол обзора, низкая контрастность, чрезвычайно низкий по сегодняшним меркам уровень цветовой передачи. Если говорить об угле подробнее, то он составляет не более 60 градусов в случае отклонения в вертикальной плоскости. Из-за столь низкого показателя даже при небольших отклонениях заметна инверсия цвета. В данный момент мы можем уверенно говорить о том, что эпоха TN -матриц подходит к концу, потому как они остались только в наиболее старых и/или дешевых смартфонах.

На смену TFT TN пришла TFT IPS . Практически во всех бюджетных смартфонах установлена именно эта матрица. Она распространена больше всего. Альтернативное название IPS – это SFT . Дебют этого типа матрицы состоялся два десятка лет тому назад. С тех пор разные производители неустанно работали над улучшением характеристик и выпуск модификаций. Их число, кстати, тоже почти достигло отметки в два десятка. Согласно последним данным, наибольшей популярностью пользуются наиболее технологичные из них: PLS производства компании Samsung и AH -IPS производства компании LG .

Они близки друг к другу в плане свойств, поэтому вопрос выбора здесь подменяется, скорее, на вопрос о разделении сфер влияния фирм. Интересно то, что подобные схожести технологического плана в свое время стали камнем преткновения между двумя компаниями, что привело к жесткому судебному разбирательству. Ну а что поделать, если у Samsung судьба такая: сегодня судится с LG , завтра с Apple .

Основные преимущества матриц типа IPS заключаются в следующем: они могут похвастаться широкими углами обзора, реалистичной цветопередачей и довольно высоким показателем PPI. Угол обзора может достигать 180 градусов. Однако зачастую производители смартфонов не сообщают информацию о том, какая модификация IPS -матрицы установлена в аппарате. А, между тем, различия можно будет заметить даже невооруженным глазом. Недостатком IPS является выцветание изображения при сильных наклонах.

Принципиальные различия существуют между жидкокристаллическими и светодиодными матрицами, носящими наименование OLED . Источник света в таких матрицах – субпиксели. Они, если так можно выразиться, и есть органические светодиоды НУ ОЧЕНЬ маленького размера. В смартфонах для создания дисплеев используется AMOLED . Важно, что при этом используется также TFT -матрица, позволяющая управлять субпикселями. Это – как раз повод дискуссий между пользователями.

Именно AMOLED -дисплеи лучше всего демонстрируют черный цвет. Его бесподобная глубина объяснима технологической особенностью: чтобы имитировать оттенок черного, матрице достаточно просто отключить или не задействовать светодиоды. Думаю, что это опять приведет читателей к логичному выводу: раз так, то и энергопотребление AMOLED лучше, нежели у LCD . И это на самом деле так. Был в свое время у этого типа матрицы свой недостаток: светодиоды разных цветов имели различные сроки службы. Но с тех пор, как его повысили минимум до трех лет, проблема ушла в небытие.

Влияет ли на восприятие рисунок субпикселей?

Однозначно. Мы привыкли думать, что все дело заключается только в том, по какой технологии изготовлена матрица экрана. Ан-нет, дело обстоит несколько по-другому. Давайте начнем с простейшего, а именно, с жидкокристаллических матриц. В них имеются RGB -пиксели. Каждый из таких пикселей состоит из трех субпикселей. Они могут быть вытянуты в одной из двух форм: либо галочка, либо прямоугольник.

А что тогда бывает в AMOLED -экранах? Я уже рассказывал о том, что источник света в AMOLED ’ах – это сами субпиксели. Так сложилось, что к красному и синему цвету человеческий глаз менее чувствителен, нежели к зеленому. Учитывая этот фактор, можно говорить о том, что подобный рисунок в случае использования его в AMOLED ухудшит цветопередачу по сравнению с IPS . Картинка будет нереалистичной, если говорить совсем просто.

Чтобы устранить этот недостаток, производители попробовали использовать технологию под название PenTile . Она предполагала наличие пикселей двух типов. Первый из них – красно-зеленый, второй – сине-зеленый. Каждый, заметьте, разбивался на два субпикселя соответствующих оттенков. Параллельно этому, субпиксели имели разную форму. Красные и синие были представлены почти идеальным квадратами, а вот зеленые – вытянутыми прямоугольниками. В итоге все привело к тому, что инженеры получили нечистый белый цвет, а также видимые зазубрины на границах цветов. В общем, получили едва не больше проблем, чем было до этого.

Но не все так плохо, как кажется. Samsung решила устранить выявленные проблемы, и ей это удалось. Современные экраны компании построены по принципу системы RG -BG , но теперь там используется новый тип рисунка. Его после успешных испытаний окрестили Diamond PenTile . Если перевести, кстати, то получится символично. Но по делу: технология делает белый оттенок натуральнее, зазубренные края “ликвидируются” за счет увеличения PPI до такого показателя, когда неровности уже просто не заметны.

Особенности конструкции

Хорошо, мы разобрались с типами матриц, принципом их работы и особенностями восприятия человеческого глаза. Теперь пришло время поговорить о том, как конструктивные особенности могут повлиять на качество отображения и выбор потенциальных покупателей, как следствие. Начнем опять же с самого простого фактора.

Производители, задавшиеся вопросом о том, что еще можно улучшить, в первую очередь принялись за воздушную прослойку между сенсором и дисплеем. Именно здесь начинается жизнь технологии под названием OGS . Если говорить опосредовано и грубо, то это есть не что иное, как технический сэндвич. В нем сенсор и матрица объединены в одно стеклянное целое. И такой эксперимент дал свои плоды: качество изображения было значительно улучшено благодаря увеличению углов обзора и повышению уровня цветопередачи. Кроме того, этот “сэндвич” смогли уменьшить в размерах, что положительно сказалось на габаритах смартфонов. Что касается недостатков: если пользователь разбил стекло, то менять придется весь пакет. Отделить составляющую от дисплея не представляется возможным. Хотя это – тот самый случай, когда плюсов больше чем минусов.

Наибольший успех в этой области был снова замечен у южнокорейского гиганта Samsung . Инженеры решили разместить между субпикселями емкостные датчики. К чему это привело? К еще большему сокращению толщины “сэндвича”. Я бы сказал, что сейчас активно распространяется технология 2,5D -дисплеев. Суть заключается в загнутом по краям стекле. Этот принцип позволяет сделать смартфон более привлекательным и комфортным, поскольку грани становятся максимально гладкими.

Как логичное продолжение процедуры, появились не только загнуты стекла, но и загнутые дисплеи. У какой компании они есть? Конечно, тут и так все ясно! Ох уж эти Edge … Хоть первыми на эту своеобразную дорожку вылезли в Samsung , LG тоже внесла свою лепту. Хотя с точки зрения технологий, их способ немного отличается от предложенного “другими корейцами”. В случае LG приходится говорить более об изогнутом смартфоне, а не дисплее.

Технологии создания экранов

1. LTPS (Low-Temperature Poly Silicon или технология низкотемпературного поликремния). Эта технология позволяет получить экран, построенный на поликристаллах кремния. Поликристаллы получают за счет использования (относительно) низких температур. Лазерное прожигание позволяет завершить процесс кристаллизации на отметке интервала 300-400 градусов. Встраивая полупроводниковые элементы прямиком на экран посредством лазерного прожига, мы можем сэкономить на подложках, ведь все транзисторы будут расположены вместе жидкими кристаллами. Мы также экономим энергию, ведь конструкция приводит к меньшему выделению тепла. Этой же цели добиваются инженеры, которые понижают технологический стандарт процессоров. Подробнее об этом можно прочитать здесь. Учтем, что дисплей с технологией LTPS будет демонстрировать повышенную яркость, а также более компактные размеры.

2. GFF (Glass-to-film-to-film full lamination или полное ламинирование стекла от пленки до пленки). Эта технология заключается в том, что экран собирается по схеме бутерброда, где “начинка” - это стекло, а “булочки” - это пленки. Если сравнивать GFF с другими технологиями, то она может не единожды проиграть им в цветопередаче, диапазоне яркости и других параметрах. С другой стороны, не стоит думать, что GFF обеспечивает плохие эксплуатационные характеристики, нет. Все познается в сравнении. А козырем данной технологии является меньшая себестоимость. Для многих пользователей, которые не являются любителями просмотров фильмов на смартфоне, это важный критерий. Ибо он непосредственно влияет на конечную стоимость аппарата.

3. In-Cell. Впервые в мире умных телефонов эта технология была продемонстрирована компанией Apple на примере практически канувшего в Лету iPhone 5. Следом за Купертино свои наработки представили корейцы из LG. Суть технологии заключается в следующем. Внутри дисплея формируется слой, который состоит из смеси оксидов индия и оксидов кремния. Эта убойная химическая смесь оказывает влияние на пропускную способность экрана. Причем сюда входит не только цветопередача, но и преломление падающего на дисплей света. В то же время, использование In-Cell приводит к повышению компактности экрана. А это значит, что и само устройство станет более тонким и легким.

4. OGS (One Glass Solution или решение с одним стеклом). Смысл заключается в том, что матрица и тачскрин представляют собой монолитную нераздельную конструкцию. Сейчас в среднем и высшем ценовом сегменте эта технология пользуется заметной популярностью. Принято считать, что отсутствие OGS можно простить только бюджетнику, да и то наличие этой технологии пользователи временами требуют и от них. В любом случае, смысл использования OGS заключается в необходимости получения лучшей цветопередачи, расширенных углов обзора, малой толщины экрана. Вторично удается улучшить энергоэффективность (из-за отсутствия буферного слоя, где обычно и бывают потери). Кроме того, между тачскрином и матрицей априори не может попасть пыль или грязь. Недостатки технологии очевидны: во-первых, это высокая стоимость изготовления. Во-вторых, при поломке придется менять модуль целиком, что опять-таки выйдет дороже.

Отдельно об IPS

Раз уж так сложилось, что IPS - наиболее распространенный матрицы в современных смартфонах, нужно поговорить о них отдельно. Особенно учитывая тот факт, что на сегодняшний день их выпускают разные компании, да и вообще счет различных модификаций уже почти достиг двух десятков единиц. Если вам удастся уточнить, какой именно тип IPS-матрицы установлен в аппарате, который вы рассматриваете для покупки, это даст большой бонус. Потому как подобное знание - ключ к выбору. Я назову не все виды, а только те, что чаще всего устанавливаются в мобльных устройствах.

1) "Чистая" IPS . База, стандарт - называйте, как хотите. Чистая IPS обладает хорошими углами обзора, и довольно реалистичной цветопередачей (на уровне 8 бит на один канал).

2) S-IPS (Super-IPS) . Улучшение обыкновенной матрицы, в котором вдобавок уменьшается время отклика.

3) A-SIPS (Advanced Super-IPS) . Созданием этой модификации занималась корпорация под названием Hitachi. Улучшения коснулись контрастности, цветовой гаммы.

4) H-IPS (Horizontal IPS) . Как косвенно вытекает из названия, разработчикам удалось улучшить визуальную однородность картинки, выводимой на экран, в горизонтальной плоскости. Вторично улучшена контрастность.

5) H-IPS A-TW (Horizontal IPS with Advanced True Wide Polarizer) . Заказчиком таких матриц стала корпорация NEC, сама матрица была разработана и поставлена специалистами корейской LG. По сути дела, это - панель модификации H-IPS, в которой используется цветовой фильтр True White (в переводе "настоящий белый"). Это приводит к увеличению углов обзора, поскольку белый цвет становится более реалистичным. Использование технологии Advanced True Wide Polarizer (технологически применяется поляризационная пленка) позволяет достигнуть еще больших углов обзора. В итоге получаем дисплей, который можно крутить без потери качества изображения, как только угодно.

6) IPS-Pro (IPS-Provectus) . Улучшения по большей части касаются уровня контрастности и цветовой гаммы.

7) S-IPS Pro (она же Advanced Fringe Field Switching) . Имеются случа использования в смартфонах, но большинство таких матриц интегрированы в планшетные компьютеры. В них используется более мощное электрическое поле, что позволяет достичь рекордных показателей в плане яркости. Вторично повышаются углы обзора и уменьшается расстояние между пикселями. Это делает картинку более однородной, стирая острые межпиксельные границы.

8) E-IPS (Enhanced IPS) . Снижено время отклика (составляет 5 миллисекунд), увеличен диагональный угол обзора. По сравнению со своими аналогами, матрицы E-IPS используют более выгодные в технологическом плане лампы подсветки. И дело не в том, что их производство обходится дешевле, а в том, что они обладают меньшим энергопотреблением.

9) P-IPS (Professional IPS) . Матрицы такого типа обладают 30-битной глубиной цвета, обладая способностью передавать до 1,07 млрд. оттенков.

1 0) AH-IPS (Advanced High Perfomance IPS) . Главные аргументы "за": повышенное разрешение картинки, увеличенное значение PPI, минимальное энергопотребление, высокая яркость и улучшенная цветопередача.

Кто производит матрицы?

Основными поставщиками матриц для смартфонов являются такие компании, как LG и Samsung. Им вторят Phillips, NEC, Dell. Однако бесспорным лидером в этой области так и остается компания LG. На сегодняшний день именно ее матрицы наиболее востребованы. Оно и понятно: фирма отвечает за качество. Нередко эти матрицы используются в аппаратах компании. При всем этом Samsung ориентируется на выпуск AMOLED и Super AMOLED для своих устройств. Phillips и Dell выпускают среднячковую продукцию. А вот NEC больше работает именно над проектированием и выпуском матриц для профессиональных компьютерных мониторов.

Помощь в выборе

Я рассказал о том, какие бывают типы матриц, как они работают и что оказывает влияние на цветовую передачу изображения, выводимого на дисплей смартфона. А теперь пришло время сделать конечные выводы, которые помогут пользователям определиться с покупкой аппаратов. Обратить внимание нужно на следующие показатели:

1) Тип матрицы . Наверное, самый главный показатель. Если наткнетесь на IPS, старайтесь по возможности уточнить ее модификацию. Неплохие AMOLED-матрицы предлагает компания Samsung в довольно дешевом ценовом сегменте (до 15 000 рублей).

2) Диагональ экрана . Да-да, она оказывает внияние на время автономной работы и производительность в целом. Сегодня стандартом считаются 5 дюймов, хотя переход на "лопаты" с диагоналями от 5.5 дюймов происходит активно. Помните: чем больше диагональ, тем больше расход энергии при прочих равных условиях, поэтому не забудьте проверить данные аккумулятора.

3) Разрешение экрана . Многим может это показаться странным, но разрешение экрана влияет на производительность. Чтобы понять смысл этого высказывания, достаточно вспомнить влияние разрешения на производительность тех же самых ПК в играх. Грубо говоря, устройству приходится тратить больше ресурсов на обработку пикселей, что может привести к подтормаживаниям. С другой стороны, рядовым пользователям хватит обыкновенного HD, а киноманам стоит призадуматься над покупкой устройства, обладающего Full HD. Смотреть дальше вряд ли стоит, поскольку для нашего глаза эта разница будет практически неуловимой.

4) Плотность пикселей . Для бюджетных устройств приемлемым показателем является цифра, попадающая в интервал от 250 до 300 пикселей на дюйм. У более дорогостоящих представителей этого класса цифра может подняться вплоть до 400 PPI. Ну а дальше идут уже предтоповые и топовые конфигурации. Не забываем, что плотность пикселей неразрывно связана с диагональю экрана и его разрешением. Из опыта могу сказать, что в повседневном использовании 5 дюймов с разрешением HD и плотностью чуть выше 300 PPI достаточно, но в VR-очках картинка будет ужасающе пиксельной.

5) Уровень подсветки . Учитывая то, что многие из нас проводят за экранами смартфонов уже едва ли не больше времени, чем перед дисплеями компьютеров и ноутбуков, это - важный параметр. Во-первых, здесь как никогда важно наличие антибликового покрытия или стекла (что, несомненно, лучше). Во-вторых, диапазон регулировки яркости должен быть таким, чтобы на солнце текст оставался читаемым, а в темноте при минимальном уровне подсветки экран не слепил глаза.

6) Технологии . Чем дороже устройство, тем больше в нем будет приятностей в виде самых разных технологий. Более подробно о том, какие технологии могут применяться при изготовлении экранов, мы уже говорили в специально отведенном разделе.

7) Защита экрана . Если у аппарата нет конструкционного защитного стекла, нужно бежать за наклеиваемым в магазин. Во-вторую очередь важно наличие олеофобного покрытия. Сейчас его довольно часто наносят на экраны в том числе и бюджетников. Один плюс олеофобки заключается в том, что по такому покрытию палец скользит ну просто как нож по маслу. Второй плюс, более важный - покрытие защищает экран от жирных разводов. Конечно, с течением времени даже нанесенное олеофобное покрытие начнет стираться.

Что нас ждет?

Компании активно работают не только над улучшением производительности смартфонов. Наивно думать, что аккумуляторы и процессоры являются приоритетным направлением. Нет, фирмы распределяют усилия равномерно. И одной из веток развития являются как раз экраны. Возможно, что в скором времени мы увидим в действии технологию QLED , основанную на использовании квантовых точек. Она позволит еще раз снизить энергопотребление, параллельно повысив уровень цветопередачи. Высокой остается вероятность создания гибких дисплеев. Но пока этого не произошло, будем опираться на итоги этой статьи.

LCD, TFT, IPS, AMOLED, P-OLED, QLED - это неполный список технологий дисплеев, которые сегодня можно встретить на массовом рынке потребительской электроники. Когда идешь покупать очередной гаджет, постоянно с этим сталкиваешься и ругаешь себя, что вовремя не разобрался.

Так вот он шанс. Читайте про специфику каждого и чем они отличаются...

Liquid Crystal Display, то есть жидкокристаллический дисплей — именно эта технология в конце 1990-х позволила превратить мониторы и телевизоры из удобных лежанок для котиков с вредными для человека электронно-лучевыми трубками внутри в тонкие изящные устройства. Она же открыла путь к созданию компактных гаджетов: ноутбуков, КПК, смартфонов.

Жидкие кристаллы — вещество, которое одновременно является и текучим, как жидкость, и анизотропным, как кристалл. Последнее качество означает, что при разной ориентации молекул жидких кристаллов оптические, электрические и другие свойства меняются.

В дисплеях такое свойство ЖК используется для регулирования светопроводимости: в зависимости от сигнала с транзистора кристаллы ориентируются определённым образом. Перед ними находится поляризатор, «собирающий» световые волны в плоскость кристаллов. После них свет проходит через RGB-фильтр и становится красным, зелёным или синим соответственно. Затем, если не блокируется передним поляризатором, проступает на экране в виде субпикселя. Несколько таких световых потоков соединяются между собой, и на дисплее мы видим пиксель ожидаемого цвета, а его сочетание с соседними пикселями способно выдавать гамму sRGB-спектра.

Когда дисплей включён, подсветка осуществляется белыми светодиодами, расположенными по периметру дисплея, и равномерно распределяется по всей площади благодаря специальной подложке. Отсюда возникают известные «болезни» LCD. Например, до пикселей, которые должны быть чёрными, свет всё равно доходит. В старых и некачественных дисплеях легко различимо «чёрное свечение».

Бывает, что кристаллы «застревают», то есть не двигаются даже при получении сигнала с транзистора, тогда на дисплее появляется «битый пиксель». Из-за специфики источника света по краям LCD-мониторов бывают видны белые засветы, а смартфоны с LCD не могут быть абсолютно безрамочными, хотя оба поколения Xiaomi Mi Mix и Essential Phone к этому стремятся.


TN, или TN+film .

По факту, Twisted nematic — «базовая» технология, которая подразумевает поляризацию света и закручивание жидких кристаллов в спираль. Такие дисплеи недорогие и сравнительно просты в производстве, а на заре своего пребывания на рынке они имели самое низкое время отклика — 16 мс — но при этом характеризовались невысокой контрастностью и малыми углами обзора. Сегодня технологии сильно шагнули вперёд, и на смену стандарту TN пришёл более продвинутый IPS.

IPS (in-plane switching) .

В отличие от TN, жидкие кристаллы в IPS-матрице не закручиваются в спираль, а поворачиваются все вместе в одной плоскости, параллельной поверхности дисплея. Это позволило увеличить комфортные углы обзора до 178° (то есть фактически до максимума), существенно повысить контрастность изображения, сделать чёрный цвет намного более глубоким, сохранив при этом сравнительную безопасность для глаз.

Подсветка и подложка LCD Apple iPod Touch

Изначально IPS-матрицы обладали большим временем отклика и энергопотреблением, чем у дисплеев с технологией TN, поскольку для передачи сигнала требовалось повернуть весь массив кристаллов. Но со временем IPS-матрицы лишились этих недостатков, отчасти — за счёт внедрения тонкоплёночных транзисторов.

TFT LCD .

По сути, это не отдельный тип матрицы, а скорее подвид, который характеризуется применением тонкоплёночных транзисторов (thin-film-transistor, TFT) в качестве полупроводника для каждого субпикселя. Размер такого транзистора составляет от 0,1 до 0,01 микрона, благодаря чему стало возможным создание небольших дисплеев с высоким разрешением. Во всех современных компактных дисплеях стоят такие транзисторы, причём не только в LCD, но и в AMOLED.


Преимущества LCD:

недорогое производство;

слабое негативное воздействие на глаза.


Недостатки LCD:

неэкономное распределение энергии;

«светящийся» чёрный цвет.


Organic light-emitting diode, или органический светодиод — грубо говоря, это полупроводник, который излучает свет в видимом спектре, если получает квант энергии. Он имеет два органических слоя, заключённых в катод и анод: при воздействии электрического тока в них происходит эмиссия и, как следствие, излучение света.

Из множества таких диодов состоит OLED-матрица. В большинстве случаев они красного, зелёного и синего цвета и вместе составляют пиксель (тонкости различного сочетания субпикселей опустим). Но дисплеи попроще могут быть монохромными и в основе иметь диоды одного цвета (например, в умных браслетах).

Однако одних «лампочек» мало — для правильного отображения информации требуется контроллер. И долгое время отсутствие адекватных контроллеров не позволяло производить светодиодные дисплеи в их сегодняшнем виде, так как корректно управлять таким массивом отдельных миниатюрных элементов крайне сложно.

По этой причине в первых OLED-дисплеях диоды управлялись группами. Контроллером в PMOLED служит так называемая пассивная матрица (passive matrix, PM). Она подаёт сигналы на горизонтальный и вертикальный ряд диодов, и точка их пересечения подсвечивается. За один такт можно просчитать только один пиксель, так что получить сложную картинку, да ещё и в высоком разрешении, таким образом невозможно. Из-за этого же производители ограничены и в размере дисплея: на экране с диагональю больше трёх дюймов качественного изображения не выйдет.


Прорыв на рынке светодиодных дисплеев произошёл, когда появилась возможность использовать тонкоплёночные транзисторы и конденсаторы для управления каждым пикселем (точнее — субпикселем) в отдельности, а не группой. В такой системе, которая называется активной матрицей (active matrix, AM), один транзистор отвечает за начало и конец передачи сигнала в конденсатор, а второй — за передачу сигнала от диода на экран. Соответственно, если сигнала нет, диод не светится, и на выходе получается максимально глубокий чёрный цвет, ведь свечение отсутствует в принципе. Благодаря тому, что светятся сами диоды, лежащие практически на поверхности, углы обзора AMOLED-матрицы максимальные. Но при отклонении от оси взгляда может искажаться цвет — уходить в красный, синий или зелёный оттенок либо вовсе пойти RGB-волнами.

Такие дисплеи отличаются высокой яркостью и контрастностью картинки. Раньше это было настоящей проблемой: первые AMOLED-экраны почти всегда были «вырвиглазными», от них могли уставать и болеть глаза. В некоторых дисплеях использовалась широтно-импульсная модуляция (ШИМ) для того, чтобы тёмное изображение не «уходило» в фиолетовый оттенок, что тоже оказывалось болезненным для глаз. Из-за органического происхождения диоды порой выгорали за два-три года, особенно при длительном отображении неизменной картинки.

Впрочем, сегодня технологии ушли далеко вперёд, и перечисленные проблемы по большей части уже решены. AMOLED-дисплеи способны выдавать естественные цвета без сильной нагрузки на глаза, а IPS-дисплеи, напротив, подтянулись в области сочности красок и контрастности. В плане энергопотребления AMOLED-технология изначально была примерно в полтора раза более эффективна, нежели LCD, но по тестам разных устройств можно сказать, что сегодня этот показатель почти выровнялся.

Тем не менее AMOLED бесспорно выигрывает в набирающих популярность направлениях. Речь идёт о безрамочных гаджетах, где разместить светодиоды значительно проще, чем жидкие кристаллы с боковой подсветкой, и об изогнутых (а в перспективе — гнущихся) дисплеях, для которых технология LCD непригодна в принципе. Но тут в игру вступает новый тип OLED-матриц.

На самом деле, есть доля лукавства в том, чтобы выделять данные дисплеи в отдельную категорию. Ведь по сути принципиальное отличие P-OLED (или POLED, не путать с PMOLED) от AMOLED одно — использование пластиковой (plastic, P) подложки, позволяющей изгибать дисплей, вместо стеклянной. Но она сложнее и дороже в производстве, чем стандартная стеклянная. К слову, AMOLED-дисплеи в силу меньшего количества «слоёв» намного тоньше LCD, а P-OLED, в свою очередь, тоньше AMOLED.

Во всех смартфонах с изогнутым дисплеем (преимущественно Samsung и LG) используется именно P-OLED. Даже во флагманах Samsung 2017 года, где, по уверению производителя, стоит сразу и Super AMOLED, и Infinity Display. Дело в том, что это маркетинговые названия, к фактическим технологиям производства не имеющие практически никакого отношения. С такой точки зрения там установлены дисплеи из органических светодиодов, которые управляются активной матрицей тонкоплёночных транзисторов и лежат на пластиковой подложке — то есть те же AMOLED, или P-OLED. К слову, в LG V30 дисплей хоть и не изгибается, а всё равно лежит на пластиковой подложке.

Преимущества OLED:

высокая контрастность и яркость;

глубокий и не энергозатратный чёрный цвет;

возможность использования в новых форм-факторах.


Недостатки OLED:

сильное воздействие на глаза;

дорогое и сложное производство.


Маркетинговые ходы

Retina и Super Retina.

В переводе с английского это слово означает «сетчатка», и Стив Джобс выбрал его неспроста. Во время презентации iPhone 4 в 2010 году он сказал, что человеческий глаз не способен различать пиксели, если показатель дисплея ppi превышает 300. Строго говоря, любой соответствующий дисплей может называться Retina, но по понятным причинам никто, кроме Apple, данный термин не использует. Дисплей будущего iPhone X был назван Super Retina, хотя в нём будет установлен AMOLED-дисплей, а не IPS, как в остальных смартфонах компании. Иными словами, к технологии изготовления экрана название также не имеет никакого отношения.

iPhone 4 — первый смартфон с дисплеем Retina

iPhone X — первый и пока единственный смартфон с дисплеем Super Retina


Super AMOLED .

Данная торговая марка принадлежит компании Samsung, которая производит дисплеи как для себя, так и для конкурентов, в том числе Apple. Изначально главное отличие Super AMOLED от просто AMOLED заключалось в том, что компания убрала воздушную прослойку между матрицей и сенсорным слоем экрана, то есть объединила их в единый элемент дисплея. В результате при отклонении от оси взгляда картинка перестала расслаиваться. Очень скоро технология добралась практически до всех смартфонов, и сегодня не совсем ясно, чем «супер» лучше «обычных» AMOLED, производимых той же компанией.


Infinity Display .

Тут всё совсем просто: «бесконечный дисплей» означает всего лишь практически полное отсутствие боковых рамок и наличие минимальных рамок сверху и снизу. С другой стороны, не представлять же на презентации какой-то там обычный безрамочный смартфон — надо назвать красиво.

Перспективные технологии

Micro-LED или ILED .

Эта технология является логичной альтернативой органическим светодиодам: в её основе лежат неорганические (Inorganic, I) из нитрида галлия, очень маленького размера. По оценке специалистов, micro-LED смогут посоперничать с привычными OLED по всем ключевым параметрам: более высокая контрастность, лучший запас яркости, меньшее время отклика, долговечность, меньший размер и вдвое меньшее энергопотребление. Но, увы, такие диоды очень сложны в массовом производстве, поэтому пока технология не сумеет конкурировать на рынке с привычными решениями.

Впрочем, это не помешало Sony показать на выставке CES-2012 55-дюймовый телевизор с матрицей из неорганических светодиодов. Apple же в 2014 году купила компанию LuxVue, специализирующуюся на исследованиях в данной области. И хотя в iPhone X используется классический AMOLED, в будущих моделях уже могут быть установлены матрицы с micro-LED, которые, как нас уверяют, позволят увеличить плотность пикселей до 1500 ppi.


Quantum Dots, или QD-LED, или QLED .

Эта перспективная технология от Samsung взяла всего понемногу от уже существующих на рынке. От ЖК-дисплеев ей досталась внутренняя подсветка, вот только «бьёт» она не в жидкие кристаллы, а в очень маленькие кристаллы с эффектом свечения, напылённые прямо на экран — квантовые частицы. От размера каждой точки зависит, каким цветом она будет светить, диапазон составляет от двух до шести нанометров (для сравнения: толщина человеческого волоса — 100000 нанометров). В результате получаются яркие, насыщенные и в то же время натуральные цвета. Но пока это очень дорогая в производстве технология: средняя стоимость QLED-телевизоров составляет примерно $2500-3000. В мобильной электронике подобные дисплеи не используются, а будут ли и когда — неизвестно.


Выводы

На практике современные дисплеи LCD и AMOLED все меньше отличаются друг от друга по качеству изображения и энергоэффективности. А вот будущее — за светодиодными технологиями в том или ином виде. Жидкие кристаллы уже отжили свой век и держатся на рынке только за счёт дешевизны и простоты производства, хотя высокое качество картинки тоже присутствует. ЖК-дисплеи благодаря своей структуре толще, чем светодиодные, и бесперспективны с точки зрения новых трендов на изогнутость и безрамочность. Так что их уход с рынка уже виднеется на горизонте, тогда как LED-технологии уверенно развиваются сразу по нескольким направлениям и, что называется, ждут своего часа.

В настоящий момент мировые производители начали выпускать смартфон с экраном IPS, который значительно превосходит по своим параметрам возможности обычных дисплеев. Так, среди главных характеристик данного элемента необходимо отметить:

  • Превосходная передача всего существующего спектра цветов. Теперь потребитель сможет увидеть изображение, максимально передающее мельчайшие особенности фактуры объекта.
  • Матрица очень устойчива к воздействиям физического или механического характера. Если обычные дисплеи начинают искажать изображение при нажатии, то данным экранам подобные деформации не грозят.
  • Качественность картинки, которая неспособна создавать проблемы со зрением, невзирая на время постоянной эксплуатации телефона. Подобная характеристика проверена при помощи специальных тестов высококвалифицированными офтальмологами.
  • Достаточно широкие углы обзора. Теперь потребитель имеет возможность просматривать свои любимые передачи или воспроизводить игры даже в общественном транспорте, не чувствуя при этом малейших неудобств. Угол обзора при этом равняется 178 градусам по вертикали и горизонтали.
  • Отклик занимает очень малое количество времени, невзирая на устоявшийся стереотип о малой производительности подобных устройств. Выбрать смартфон с экраном IPS означает приобрести высококачественный товар, готовый оптимально выполнять любые требования своего непосредственного владельца.
  • Возможность просматривания видеороликов и воспроизведения игр в максимальном качестве. Вместе с данным дисплеем нередко модели телефонов оснащаются высокочастотным процессором, способным гарантировать максимальное быстродействие всех процессов устройства.

Эти превосходные аппараты в настоящее время стоят не слишком много. Так, на смартфон с экраном IPS цена стабильно рассчитана на всех среднестатистических граждан государства. Приобретение подобного шедевра техники также довольно простое, поскольку многочисленные магазины уже напрямую работают с филиалами производителей. Потребителю нужно определиться с понравившейся моделью и той компанией, которая ее разработала, после чего сделать заказ посредством сети интернет или собственнолично нужно посетить место продажи. Эти устройства способны кардинально изменить уровень жизни человека, подарить ему возможность расслабиться, невзирая на то, где он находится.

Статьи и Лайфхаки

Встречать в смартфоне LTPS дисплей наверняка приходилось многим, но ответить, что это такое и чем он лучше (или хуже) других типов матриц, может не каждый.

Наша статья для тех, кто «галопом по европам» хочет пробежаться по технологии изготовления таких матриц, хотя бы ради того, чтобы не позволять маркетинговым ловкачам вешать себе лапшу на уши.

А заодно реально оценить преимущества и недостатки.

Суть проблемы

Когда на смену NT+film матрицам пришли , они обладали массой преимуществ, за исключением одного: TFT транзисторы в них имели в качестве основы так называемый аморфный кремний (a-Si).

Основным недостатком данного материала является низкая подвижность электронов. В результате время отклика таких дисплеев существенно выше, чем у устаревших, но всё же очень «быстрых» NT матриц.

Кроме основного, хватало и других недостатков :

  • Высокое энергопотребление.
  • Большие физические размеры транзистора управляющей матрицы.
  • Крупные субпиксели, не позволяющие добиться высокого разрешения.
Получить монокристаллический кремний, обладающий высокой подвижностью электронов, на стеклянной подложке оказалось невозможно, из-за того, что для этого требовалась высокая температура, превышавшая точку плавления стекла.

Что такое LTPS


Данная аббревиатура расшифровывается как Low Temperature Poly Silicon – низкотемпературный поликристаллический кремний.

Эта технология представляет собой перевод аморфоного кремния в поликристаллическую форму без использования высоких температур, способных повредить стеклянную подложку.

Для этого используется отжиг с помощью эксимерного лазера. Значение температуры при этом не превышает 300-400 градусов.

В результате получаются управляющие элементы, не только более «быстрые», но и куда меньших габаритов. Благодаря этому стало возможным увеличить плотность пикселей матрицы, а дополнительным бонусом стало снижение потребления энергии.

Подвижность электронов возросла по сравнению со структурами на основе аморфного кремния с 0.5 см2/В*s до 200 см2/В*s.

Вдобавок увеличился апертурный коэффициент ячейки, представляющий собой отношение полезной площади к общей.

Интегрированные драйверы


Новая технология дает возможность в рамках единого цикла формировать на той же стеклянной подложке интегральные схемы.

Это позволяет избавиться от некоторой части проводников и контактов, а заодно сократить площадь, занимаемую управляющими элементами.

Это дает плюс к надежности матрицы в целом. В дополнение к этому стоит отметить, что надежность тонкопленочных транзисторов, полученных по LTPS технологии в сто раз выше, чем у изготовленных из аморфного кремния.

Альтернатива


Еще одной попыткой увеличить подвижность электронов стали , разрабатываемые . Их создатели вообще решили отказаться от кремния, заменив их сложным оксидом индия-галлия-цинка.

Первые серийные смартфоны появились еще в 2012 году, но с тех пор моделей, использующих данную технологию, появилось считанные единицы.


Зато LTPS экраны успешно теснят на рынке IPS матрицы на основе аморфного кремния: в 2015 году их доля составила 29,8% против 58,1% у a-Si, а в 2016-ом – уже 34,6% против 51,3%.

В заключение

Следует понимать, что LTPS технология сама по себе не привязана к конкретному источнику света. Она используется только для формирования управляющих матриц, которые подходят как для LCD, так и для OLED дисплеев.

Но при этом данная аббревиатура обычно ассоциируется всё-таки именно с ЖК экранами, заменяя традиционную IPS.

В целом же матрицы, производимые таким способом, получаются более экономичными, с высоким разрешением, а время отклика у них практически приближается к NT-дисплеям.

Главным недостатком на данный момент является более высокая стоимость в сравнении с IPS, поэтому в бюджетном сегменте LTPS экраны почти не встречаются.

Нелишне упомянуть, что в ЖК-матрицах Apple iPhone используется именно эта технология, обеспечиваемая основными поставщиками компании JDI, Sharp и LG Display.

И хотя в iPhone X купертинцы «изменили» LCD в пользу OLED, полностью отказываться от них они в ближайшее время не собираются.

Экран – неотъемлемый элемент конструкции современного мобильного телефона. Давно канули в Лету времена, когда характеристика «цветной» отражала все достоинства модели, служила доказательством того, что трубка относится к верхнему сегменту и обладает флагманскими характеристиками. Сегодня разнообразие экранов мобильных телефонов позволяет удовлетворить даже самых привередливых покупателей. Обратной стороной медали является обилие технологий и терминов для их обозначения, среди которых порой очень трудно сориентироваться непрофессионалу. Эта статья позволит разобраться со всеми ими, ознакомив вас с основными типами экранов, их конструкцией и свойствами.

При характеристике свойств устройства ввода/вывода, коим является сенсорный дисплей, учитываются такие параметры:

  1. Размеры экрана, его диагональ (измеряются чаще всего в дюймах, 1 дюйм это 2.5 см).
  2. Разрешение (количество активных точек, формирующих картинку).
  3. Показатель плотности пикселей (выражается в DPI (dots per inch) или PPI(pixel per inch) – количестве точек на дюйм).
  4. Технология производства (от нее зависит качество изображения, потребительские свойства изделия).
  5. Тип конструкции тачскрина (сенсорного покрытия, реагирующего на касания).

Именно эти показатели служат критериями выбора телефона. А теперь подробнее.

Диагональ экрана большинства современных смартфонов находится в пределах 4-6 дюймов (меньшие размеры традиционно устанавливаются на простые «звонилки», а с отметки в 6" стартуют планшетные ПК).

Разрешение и DPI

Разрешение экрана – одна из самых важных характеристик телефона. Именно от нее зависит, насколько качественной будет картинка на экране телефона. Чем выше оно – тем больше плотность пикселей, и тем однороднее будет выглядеть изображение. Сочетание больших габаритов и небольшого разрешения – делают картинку «зернистой» и фрагментированной. Высокая разделительная способность – напротив, обеспечивает информации на экране однородность и плавность форм. Современные Full-HD экраны состоят из элементов, неразличимых невооруженным глазом, и делают изображение сверхчетким.

Термин Retina display введен корпорацией Apple для обозначения экранов, плотность пикселей которых составляет более 300 единиц на дюйм (для телефонов). В таких устройствах человеческий глаз не может отличить отдельные элементы экрана и воспринимает картинку целиком, подобно реальным очертаниям предмета или его изображению на бумаге и холсте. Сегодня производством Retina display занимаются такие компании, как Samsung, Sharp и LG.

Сегодня наиболее распространены следующие разрешения дисплея:

  1. 320х480 точек – почти ушедшее из употребления, но еще встречающееся в бюджетных смартфонах. Дает излишне зернистую картинку, потому не пользуется популярностью. Обозначается термином HVGA.
  2. 480х800 и 480х854 (WVGA) – распространенные разрешения среди недорогих телефонов. Нормально смотрится при диагонали 3.5-4", на больших – дает излишне фрагментированное изображение.
  3. 540х960 (qHD) – популярный показатель для средне-бюджетных смартфонов. Обеспечивает приемлемое качество изображения в экранах до 4.5-4.8 дюймов диагональю.
  4. 720х1280 – с этой отметки стартуют HD-смартфоны. Обеспечивает отличную детализацию картинки вплоть до 5.5", нормально смотрится и на больших дисплеях.
  5. 1080х1920 – Full-HD матрицы, предоставляющие изображение превосходного качества. Использубются в флагманских моделях смартфонов.
  6. Отдельно стоит выделить дисплеи, применяемые в продукции компании Apple. В них используются нестандартные разрешения: 640х960 при 3.5" (модель iPhone 4/4s), 640х1136 для 4" (5/5c/5s), и 750х1334 для 4.7" (iPhone 6).

При выборе нового смартфона – следует учитывать размеры дисплея и DPI. Покупка телефона с меньшей плотностью пикселей, чем была у предшественника – потребует длительного привыкания, и первое время будет причинять дискомфорт глазам. Если плотность точек на дюйм составляет менее 200 – не исключено, что вы так и не сможете к ней привыкнуть. Обращайте на это внимание при приобретении телефона с большей диагональю, чем у старой трубки: например, разрешение 480х800 дает около 233 DPI при диагонали в 4", а при 5" – всего 186.

Технологии производства, виды дисплеев смартфонов

Сегодня можно выделить два основных направления в технологиях производства экранов: жидкокристаллические матрицы (LCD) и устройства на органических светодиодах (OLED).

Первые завоевали несколько большее распространение и делятся, в свою очередь, на:

TN матрицы – это самые распространенные дисплеи для телефонов с сенсорным экраном. Их достоинства – низкая стоимость, высокая скорость отклика (время реакции пикселя на подачу напряжения). К недостаткам таких матриц относят недостаточно качественную передачу цвета и посредственный угол обзора.

IPS – следующий шаг в эволюции отображающих устройств. Из-за своей дороговизны – изначально технология применялась только в профессиональных мониторах, но позже пришла в мир телефонов и смартфонов. Позволяют добиться великолепной цветопередачи, хороших углов обзора (до 178 градусов), высокой четкости и контрастности. Такие экраны стоят дороже, потому почти не применяются в телефонах ценой до 200 долларов.

PLS – попытка компании «Самсунг» создать решение, лишенное недостатков TN-матриц, но дешевле IPS. По сути, является модификацией IPS с применением компромиссных решений для снижения себестоимости производства.

Органические дисплеи (OLED, AMOLED) – отличаются от LCD тем, что вместо жидких кристаллов – матрица состоит из микроскопических светодиодов. Такие экраны позволяют обойтись без дополнительной подсветки (в ЖК-матрицах традиционно применяются диоды, устанавливаемые по периметру экрана, а свет от них – направляется на матрицу с помощью слоя отражателей). Их энергопотребление зависит от цвета передаваемого изображения (темные оттенки более экономичны, чем светлые, при отображении которых энергопотребление даже выше, чем у ЖК).

Сверху super amoled
Снизу ips

Теоретически такие дисплеи почти по всем параметрам превосходят LCD, но на практике – не всегда удается достичь идеальной картинки. К недостаткам изделий следует отнести низкую надежность. Super AMOLED дисплей – попытка разработать экран специально для сенсорных смартфонов. В нем тачскрин представляет одно целое с отображающей поверхностью. За счет уменьшения толщины достигается большая яркость, лучшая цветопередача и углы обзора, но снижается механическая прочность изделия.

Типы сенсорных экранов

Наиболее распространенными являются два вида дисплеев:

  1. Резистивные.
  2. Емкостные.

Резистные состоят из двух слоев, на поверхности которых нанесены прозрачные дорожки проводников. Вычисление координаты нажатия происходит за счет изменения сопротивления тока в месте касания. Сейчас такие экраны почти не применяются, их сфера использования – ограничена бюджетными моделями. Достоинством резистивных тачскринов являются дешевизна и возможность нажатия любым предметом. Недостатки – низкая долговечность, устойчивость к царапинам, потеря яркости экрана.

Экран смартфона с емкостным сенсором – отличается большей яркостью, устойчивостью к царапинам (за счет применения стекла), но более сложен в производстве и не реагирует на касания посторонних предметов. В основе работы технологии – вычисление координаты утечек тока при нажатии пальцем. Такие тачскрины состоят из одного слоя стекла, на внутреннюю поверхность которого нанесен токопроводящий слой, или стекла и сенсорной пленки.

В последнее время емкостные экраны оснащаются специальным закаленным стеклом, наподобие Gorilla Glass , что позволяет достичь высокой устойчивости к механическим повреждениям. Для предотвращения загрязнений на тачскрины смартфонов наносят специальное олеофобное покрытие.