Как делают процессоры: технология Mapper против Intel. Курсовая работа: Этапы производства микропроцессоров Изготовление микропроцессоров

Как производятся микропроцессоры

Вам не приходилось бывать в сердце полупроводниковой индустрии - на фабрике по производству микросхем? Каждое подобное сооружение - творение, способное впечатлить любого, даже непосвященного в производственные процессы человека.

У побывавших там возникало ощущение, будто совершаешь фантастическое путешествие в футуристический муравейник роботов или внутрь самой микросхемы. Там, в стерильном зале размером с три футбольных поля, снуют роботы и десятки специалистов, облаченных в скафандры и защитные шлемы. А высокоточные машины для производства микросхем «парят» на специальных платформах, освещенные желто-оранжевым светом…

Этапы производства кристаллов микросхем и фотолитография

Интегральные микросхемы делают на поверхности монокристаллического кремния (Кремний (Si) используется потому, что он является наиболее подходящим для этих целей полупроводником. В свою очередь, полупроводники - это класс материалов, чья электрическая проводимость находится посреди между проводимостью проводников (главным образом, металлов) и изоляторов (диэлектриков). Кремний также может выступать как в качестве диэлектрика, так и в качестве проводника - в зависимости от количества и типа присутствующих в нем примесей других химических элементов. И эта особенность широко используется при производстве микросхем. Впрочем, в редких случаях вместо кремния применяют и другие материалы. В частности, Intel умеет внедрять в свой 90-нм техпроцесс биполярные транзисторы с гетеропереходами (HBT) на кремний-германии (SiGe)) путем последовательного создания различных слоев на тонкой (меньше миллиметра) круглой (диаметром до 30 см) кремниевой пластине, именуемой подложкой [Тонкие пластины нарезаются из тяжеленной длинной цилиндрической болванки монокристаллического кремния, которая выращивается специальным прецизионным способом. Затем пластины полируются до зеркального блеска механическими и химическими методами. «Рабочая» поверхность (то есть та, на которой далее создается микросхема) пластины должна быть гладкой и совершенной на атомарном уровне и иметь весьма точную кристаллографическою ориентацию (подобно различным граням бриллианта при огранке, но еще более совершенной)]. Слои формируются при помощи различных процессов с использованием химических реактивов, газов и света. Производство современных микропроцессоров является сложным процессом, состоящим из трехсот с лишним шагов - более двадцати слоев «витиевато» соединены между собой, дабы сформировать схему микропроцессора с трехмерной структурой. Точное число слоев на подложке (вафле) зависит от дизайн-проекта конкретного процессора. Сотни идентичных микропроцессоров создаются на одной кремниевой подложке и на финальной стадии разрезаются на отдельные прямоугольные кристаллы - чипы.

Процессы формирования различных слоев и рисунков элементов микросхемы на подложке достаточно хитроумны (фактически это целая область науки), однако в их основе лежит одна простая идея: поскольку характерные размеры создаваемого рисунка настолько малы (Например, ячейка кэш-памяти процессора на 90-нм ядре Prescott в сто раз меньше красной кровяной клетки (эритроцита), а один ее транзистор - величиной с вирус гриппа), что осаждать те или иные материалы в нужных местах просто невозможно, поступают проще - материал осаждают сразу на всю поверхность подложки, а затем его аккуратно удаляют из тех мест, где он не нужен. Для этого служит процесс фотолитографии.

Что такое «чистая комната» и почему они используются на полупроводниковых фабриках?

Кристаллы микросхем должны производиться в условиях контролируемого и очень чистого воздуха. Поскольку функциональные элементы (транзисторы, проводники) на микрочипах очень малы, любая чужеродная частица (пыль, дым или чешуйки кожи), попавшая на пластину с будущими микросхемами на промежуточных стадиях ее производства, способна вывести из строя целый кристалл. «Чистые комнаты» классифицируются по размеру и количеству микрочастиц, присутствующих в единице объема (кубическом футе, примерно равном одной тридцатой части кубометра) воздуха. Например, комнаты класса 1, используемые в современном производстве, примерно в тысячу раз чище, чем хирургическая операционная. «Чистая комната» управляет чистотой воздуха путем фильтрации поступающего воздуха, удалением грязи с установок, ламинарным перемещением воздуха от потолка к полу (примерно за шесть секунд), регулировкой влажности и температуры. Люди в «чистых комнатах» ходят в специальных скафандрах, закрывающих, в том числе, весь волосяной покров (а в ряде случаев - даже с собственной системой дыхания). Для устранения вибраций чистые комнаты располагаются на собственном виброзащитном фундаменте.

Фотолитография является незыблемой основой производства микросхем, и в обозримом будущем ей вряд ли найдется достойная замена. Поэтому имеет смысл рассмотреть ее подробнее. Например, нам нужно создать рисунок в слое какого-то материала - диоксида кремния или металла (это наиболее распространенные в современном производстве операции). Прежде всего, на подложке тем или иным способом создается тонкий (обычно тоньше одного микрона) и сплошной, без дефектов, слой нужного материала. Далее на нем проводится фотолитография. Для этого сперва на поверхность пластины наносится тонкий слой светочувствительного материала, называемого фоторезистом (Фоторезист наносится из жидкой фазы, равномерно распределяется по поверхности пластины вращением в центрифуге и сушится до затвердевания). Затем пластина с фоторезистом помещается в прецизионную установку, где нужные участки поверхности облучаются ультрафиолетом сквозь прозрачные отверстия в фотомаске (ее еще называют фотошаблоном). Маска содержит соответствующий (наносимый на поверхность пластины) рисунок, который разрабатывается для каждого слоя в процессе проектирования микросхемы. Под действием ультрафиолета облученные участки фоторезиста меняют свои свойства так, что становится возможным их селективно удалить в определенных химических реактивах (Существует негативный и позитивный фоторезист. Один при облучении «крепчает», поэтому удаляют его необлученные участки, а другой, наоборот, теряет химическую стойкость, поэтому удаляются его облученные участки. Соответственно, различают позитивную и негативную фотолитографию). После снятия фоторезиста остаются открытыми только те области поверхности пластины, над которыми требуется совершить нужную операцию - например, убрать слой диэлектрика или металла. Они успешно удаляются (эта процедура называется травлением - химическим или плазмохимическим), после чего остатки фоторезиста можно окончательно убрать с поверхности пластины, оголив сформированный в слое нужного материала рисунок для дальнейших действий.Фотолитография завершена.

При производстве современных микропроцессоров приходится совершать операции фотолитографии до 20–25 раз - каждый раз над новым слоем. В общей сложности это занимает несколько недель! В одних случаях это слои изолирующих материалов, служащих подзатворным диэлектриком транзисторов или пассивирующими (изолирующими) прослойками между транзисторами и проводниками. В других - это формирование проводящих поликремневых затворов транзисторов и соединяющих транзисторы металлических проводников (В целях упрощения часть операций иногда совмещают - например, так называемые самосовмещенные затворы изготавливаются на базе одной и той же фотолитографии одновременным формированием рисунка подзатворного диэлектрика и тонкого поликремниевого затвора). В третьих - это формирование селективно легированных областей (главным образом - стоков и истоков транзисторов), причем легирование участков поверхности монокристаллической кремниевой пластины ионизированными атомами различных химических элементов (с целью создания в кремнии полупроводниковых областей n- или p-типа) производится не через окна в фоторезисте (он слишком нестоек для этого), а сквозь рисунок в достаточно толстом слое нанесенного диэлектрика (например, того же оксида кремния). После чего диэлектрик удаляется вместе с фоторезистом.

Иногда применяется и такой интересный метод, как взрывная фотолитография. То есть сперва формируется рисунок (вытравливаются окна в фоторезисте или временном слое диэлектрика), затем на поверхность пластины наносится сплошной слой нового материала (например, металла), и, наконец, пластина помещается в реактив, удаляющий остатки фоторезиста или временный диэлектрик. В результате удаляемый слой как бы «взрывается» изнутри, унося с собой лежащие на нем куски нанесенного последним металла, а в предварительно «открытых» участках (окнах) металл остался и сформировал нужный нам функциональный рисунок (проводников или затворов). И это только верхушка айсберга, называемого микроэлектронной технологией, в основе которой лежит принцип фотолитографии.

Таким образом на поверхности кремниевой пластины создается сложная трехмерная структура толщиной в несколько микрон, которая, собственно, и является электронной схемой. Сверху схема покрывается толстым (микроны) слоем пассивирующего диэлектрика, защищающего тонкую структуру от внешних воздействий. В нем лишь открываются окна для больших, стороной в десятки микрон, квадратных металлических контактных площадок, через которые на схему подаются извне питающие напряжения и электрические сигналы. А снизу механической основой микросхемы служит кремниевая пластина толщиной в сотни микрон. Теоретически, такую схему можно было бы сделать очень тонкой (10–30 мкм) и при желании даже «свернуть в трубочку» без потери функциональности. И подобные работы уже некоторое время ведутся в отдельных направлениях, хотя традиционные кристаллы микросхем (чипы) по-прежнему остаются «несгибаемыми».

После завершения технологических процедур каждый из кристаллов на пластине тестируется (подробнее об этом - в следующей статье), а потом пластина разрезается на отдельные кристаллы (прямоугольные чипы) при помощи алмазной пилы (Перед разрезанием на кристаллы толщина пластины у современных микропроцессоров уменьшается примерно на треть при помощи механической полировки. Это позволяет помещать их в более компактные корпуса. Полировка обратной стороны преследует также цели удаления посторонних материалов с последующим формированием электрического и адгезионного контактов к подложке при корпусировке). Далее каждый чип упаковывается в свой корпус, что позволяет подключать его к другим приборам. Тип упаковки зависит от типа микросхемы и от того, как она будет использоваться. Напоследок все упакованные чипы тестируются еще раз (негодные отбраковываются, годные проходят специальные стресс-тесты при различных температурах и влажности, а также проверку на электростатический разряд), сортируются по характеристикам и соответствию тем или иным спецификациям и отгружаются заказчику.

Технология Intel Copy Exactly

У большинства производителей микросхем оборудование и процессы, используемые в лабораториях для исследований и разработок, отличаются от того, что применяется на фабриках производства готовой продукции. И при переводе производства с опытного на серийное часто возникают серьезные задержки, связанные с тем, что на новом оборудовании требуется заметно дорабатывать и адаптировать технологические процессы, чтобы достичь высокого процента выхода годной продукции, ранее полученного в лабораториях. Это не только задерживает массовое производство, но и приводит к изменениям сотен параметров техпроцессов и даже конечных изделий. То же самое справедливо, если процесс, отлаженный на одной фабрике, переносится на другую с новым оборудованием.

Чтобы предотвратить возможные издержки, корпорация Intel, имеющая уже более десятка полупроводниковых фабрик, несколько лет назад внедрила у себя технологию Copy Exactly, суть которой в том, что при переносе технологии изготовления того или иного продукта из лаборатории на фабрику или между разными фабриками производится полное, до мелочей повторение (дупликация) всего, что с этим техпроцессом связано. Для этого, в частности, менеджеры с заводов участвуют в разработке продукта. А при переносе технологии копируется буквально все - не только входные и выходные параметры процессов (более 500!), но и их протекание, оборудование и параметры его настроек, поставщики исходных материалов для техпроцессов, трубопроводная система, чистые комнаты и даже методики обучения персонала.

Эта новаторская методика переноса технологий оказалась очень успешной. Сегодня она позволяет заводам выходить на полную мощность практически сразу после запуска - в течение нескольких недель. К тому же технология Copy Exactly придает фабрикам одной корпорации большую гибкость: начатые на одном заводе, пластины без ущерба для качества и выхода годных могут быть завершены на другом. А в случае аварии или реорганизации одной из фабрик другие «подхватят» ее дело и бизнес практически не пострадает. Эту технологию по достоинству оценивают и конкуренты - например, AMD и IBM, - хотя между ними в настоящее время она неприменима, поскольку их технологические маршруты несколько различаются.

Полупроводниковые фабрики

Сейчас в промышленности по производству чипов подходит к завершению одна из тех революций, которые раз в десятилетие меняют облик индустрии. Изготовители переходят от подложек диаметром 200 мм к подложкам диаметром 300 мм (см. фото справа), в результате чего появляется возможность заметно удешевить производство микросхем, а вместе с этим - всей электронной полупроводниковой продукции. Дело в том, что подложка диаметром 300 мм обеспечивает 225-процентное увеличение площади кремниевой пластины и 240-процентное увеличение полезного выхода чипов с каждой подложки. Кроме того, значительно улучшаются и экологические характеристики производства, которое требует меньшего расхода химических реактивов и энергии в пересчете на каждый процессор, создает меньше отходов. По данным Intel, по сравнению с заводом, работающим на 200-миллиметровых подложках, новая фабрика выбрасывает на 48% меньше летучих органических веществ, расходует на 42% меньше сверхчистой воды и примерно на 40% меньше энергии. На 50% сокращаются затраты труда.

Современные «300-мм» фабрики - это гигантские промышленные предприятия стоимостью около 2 млрд. долларов и площадью более сотни тысяч квадратных метров. Лишь немногие из современных компаний-производителей чипов (двадцатку лидеров см. во врезке на стр. 34) могут позволить себе вложения в такие дорогие фабрики. Ведь для постройки и дальнейшей эксплуатации подобных предприятий требуется достичь уровня ежегодных продаж в размере как минимум 6 млрд. долларов в расчете на каждую фабрику. Подобные фабрики принято называть «foundry» - один из переводов этого термина на русский язык означает «литейное производство». Название олицетворяет колоссальный индустриальный масштаб: ювелирный процесс изготовления высокотехнологичных элементов микропроцессоров становится на промышленный поток, масштаб которого сравним разве что с масштабом производства продукции огромными металлургическими цехами. В 2000 году, когда продажи чипов были на подъеме, всего десять компаний в мире имели объемы продаж выше 6 млрд. долларов. Из «старой гвардии» сегодня только Intel, IBM, Infineon, AMD, Texas Instruments и Samsung владеют собственными действующими фабриками по производству микросхем на 300-мм подложках. Другие создаются и управляются совместно объединениями компаний - например, «Motorola - Philips - STMicroelectronics - Taiwan Semiconductor». Несомненным лидером в планах постройки новых фабрик является Тайвань. Уже в 2001 году на острове была изготовлена пятая часть всего мирового производства подложек, а к 2010 году эта доля может достичь 40%. На пятки Тайваню наступают Китай, Малайзия и Сингапур - они планируют построить 15 фабрик, пять из которых будут работать на 300-мм пластинах.

У корпорации Intel таких действующих в промышленном масштабе фабрик уже четыре: F11X в Рио-Ранчо (штат Нью-Мексико), две - D1C и D1D - в Хиллсборо (штат Орегон) и недавно введенная в строй Fab 24 в ирландском городке Лейкслип (Leixlip). Все они могут выпускать процессоры по 90-нм технологии; пятая же, Fab 12 в Чандлере (штат Аризона) для 65-нм техпроцесса, будет переведена на 300-мм пластины к 2005 году. А, например, у AMD ввод в строй первой 300-мм фабрики Fab 36 планируется лишь в следующем году, см. обзор на www.terralab.ru/system/33692. Как полагают эксперты, существующие фабрики с 200-мм подложками смогут продержаться «на плаву» до 2005 года, после чего они уже не смогут выдержать ценовой конкуренции с 300-мм процессом. К 2005 году чипы будут делаться по технологии 65 нм, а на микропроцессорах будет интегрировано по миллиарду транзисторов! Чипы станут настолько крошечными, что позволят встраивать сотовые телефоны с голосовым набором номера в авторучку.

Почему фабрики для производства микросхем так дороги (до 5 млрд. долларов)? Полупроводниковые фабрики выполняют наиболее сложные задачи среди всех фабрик в мире. Они используют только специализированные материалы, болты, конструктивные элементы, оборудование и пр. Кроме того, интеловские фабрики, например, почти вдвое больше, чем средний размер подобных заводов в мире. Само здание стоит примерно 25% от общей стоимости фабрики и еще лет десять после постройки остается сооружением, пригодным для решения самых современных задач. Оборудование (установки для фотолитографии, газофазного осаждения, ионной имплантации) и автоматы на этаже стоят остальные 75%.

Дополнительные измерения проводятся для того, чтобы убедиться в виброустойчивости фундамента и установок. Даже если фабрика - внешне одно здание, на самом деле это несколько зданий, отделенных друг от друга набольшими (до 10 см) промежутками, и каждое здание имеет собственный фундамент. Это помогает гасить различные вибрации - как от внешних источников (автотранспорта, поездов), так и собственных вибраций оборудования.

1. Технологии производства микропроцессоров. 4

1.2 Основные этапы производства. 8

1.3 Выращивание диоксида кремния и создание проводящих областей. 9

1.4 Тестирование. 11

1.5 Изготовление корпуса. 11

1.6 Перспективы производства. 12

2. Особенности производства микропроцессоров. 18

3. Технологические этапы производства микропроцессоров. 26

3.1 Как создаются чипы.. 26

1.2 Всё начинается с подложек. 27

1.3 Производство подложек. 27

1.4 Легирование, диффузия. 29

1.5 Создание маски. 30

1.6 Фотолитография. 31

Заключение. 37

Список литературы.. 38

Введение

Современные микропроцессоры – это самые быстрые и умные микросхемы в мире. Они могут совершать до 4 млрд. операций в секунду и производятся с использованием множества различных технологий. С начала 90-х годов 20 века, когда процессоры пошли в массовое использование они пережили несколько ступеней развития. Апогеем развития микропроцессорных структур, использующих существующие технологии микропроцессоров 6-го поколения, стал 2002 год, когда стало доступным использование всех основных свойств кремния для получения больших частот при наименьших потерях при производстве и создании логических схем. Сейчас же эффективность новых процессоров несколько падает, несмотря на постоянный рост частоты работы кристаллов.

Микропроцессор - это интегральная схема, сформированная на маленьком кристалле кремния. Кремний применяется в микросхемах в силу того, что он обладает полупроводниковыми свойствами: его электрическая проводимость больше, чем у диэлектриков, но меньше, чем у металлов. Кремний можно сделать как изолятором, препятствующим движению электрических зарядов, так и проводником - тогда электрические заряды будут свободно проходить через него. Проводимостью полупроводника можно управлять путем введения примесей.

Микропроцессор содержит миллионы транзисторов, соединенных между собой тончайшими проводниками из алюминия или меди и используемых для обработки данных. Так формируются внутренние шины. В результате микропроцессор выполняет множество функций – от математических и логических операций до управления работой других микросхем и всего компьютера.

Один из главных параметров работы микропроцессора – частота работы кристалла, определяющая количество операций за единицу времени, частота работы системной шины, объем внутренней кэш-памяти SRAM. По частоте работы кристалла маркируют процессор. Частота работы кристалла определяется частотой переключений транзисторов из закрытого состояния в открытое. Возможность транзистора переключаться быстрее определяется технологией производства кремниевых пластин, из которых делаются чипы. Размерность технологического процесса определяет размеры транзистора (его толщину и длину затвора). Например, при использовании 90-нм техпроцесса, который был введен в начале 2004 года, размер транзистора составляет 90 нм, а длина затвора – 50 нм.

Все современные процессоры используют полевые транзисторы. Переход к новому техпроцессу позволяет создавать транзисторы с большей частотой переключения, меньшими токами утечки, меньших размеров. Уменьшение размеров позволяет одновременно уменьшить площадь кристалла, а значит и тепловыделение, а более тонкий затвор позволяет подавать меньшее напряжение для переключения, что также снижает энергопотребление и тепловыделение.

1. Технологии производства микропроцессоров

Сейчас на рынке наблюдается интересная тенденция: с одной стороны компании-производители стараются как можно быстрее внедрить новые техпроцессы и технологии в свои новинки, с другой же, наблюдается искусственное сдерживание роста частот процессоров. Во-первых, сказывается ощущение маркетологами неполной готовности рынка к очередной смене семейств процессоров, а фирмы еще не получили достаточно прибыли с объема продаж производящихся сейчас CPU – запас еще не иссяк. Достаточно заметно превалирование значимости цены готового изделия над всеми остальными интересами компаний. Во-вторых, значительное снижение темпов "гонки частот" связано пониманием необходимости внедрения новых технологий, которые реально увеличивают производительность при минимальном объеме технологических затрат. Как уже было замечено, производители столкнулись с проблемами при переходе на новые техпроцессы.

Технологическая норма 90 нм оказалась достаточно серьезным технологическим барьером для многих производителей чипов. Это подтверждает и компания TSMC, которая занимается производством чипов для многих гигантов рынка, таких как компании AMD, nVidia, ATI, VIA. Долгое время ей не удавалось наладить производство чипов по технологии 0,09 мкм, что привело к низкому выходу годных кристаллов. Это одна из причин, по которой AMD долгое время переносила выпуск своих процессоров с технологией SOI (Silicon-on-Insulator). Связано это с тем, что именно на этой размерности элементов стали сильно проявляться всевозможные ранее не столь сильно ощутимые негативные факторы как токи утечки, большой разброс параметров и экспоненциальное повышение тепловыделения. Разберемся по порядку.

Как известно, существует два тока утечки: ток утечки затвора и подпороговая утечка. Первая вызвана самопроизвольным перемещением электронов между кремниевым субстратом канала и поликремневым затвором. Вторая – самопроизвольным перемещением электронов из истока транзистора в сток. Оба эти эффекта приводят к тому, что приходится поднимать напряжение питания для управления токами в транзисторе, что негативно сказывается на тепловыделении. Так вот, уменьшая размеры транзистора, мы, прежде всего, уменьшаем его затвор и слой диоксида кремния (SiO2), который является естественным барьером между затвором и каналом. С одной стороны это улучшает скоростные показатели транзистора (время переключения), но с другой – увеличивает утечку. То есть, получается своеобразный замкнутый цикл. Так вот переход на 90 нм – это очередное уменьшение толщины слоя диоксида, и одновременно увеличение утечек. Борьба с утечками – это опять же, увеличение управляющих напряжений, и, соответственно, значительное повышение тепловыделения. Все это привело к задержке внедрения нового техпроцесса со стороны конкурентов рынка микропроцессоров – Intel и AMD.

Один из альтернативных выходов – это применение технологии SOI (кремний на изоляторе), которое недавно внедрила компания AMD в своих

64-разрядных процессорах. Впрочем, это стоило ей немало усилий и преодоление большого количества попутных трудностей. Зато сама технология предоставляет громадное количество преимуществ при сравнительно малом количестве недостатков. Суть технологии, в общем-то, вполне логична - транзистор отделяется от кремневой подложки еще одним тонким слоем изолятора. Плюсов - масса. Никакого неконтролируемого движения электронов под каналом транзистора, сказывающегося на его электрических характеристиках - раз. После подачи отпирающего тока на затвор, время ионизации канала до рабочего состояния, до момента, пока по нему пойдет рабочий ток, сокращается, то есть, улучшается второй ключевой параметр производительности транзистора, время его включения/выключения - это два. Или же, при той же скорости, можно просто понизить отпирающий ток - три. Или найти какой-то компромисс между увеличением скорости работы и уменьшением напряжения. При сохранении того же отпирающего тока, увеличение производительности транзистора может составить вплоть до 30%, если оставить частоту той же, делая упор на энергосбережение, то там плюс может быть и большим - до 50%. Наконец, характеристики канала становятся более предсказуемыми, а сам транзистор становится более устойчивым к спорадическим ошибкам, вроде тех, что вызывают космические частицы, попадая в субстрат канала, и непредвиденно ионизируя его. Теперь, попадая в подложку, расположенную под слоем изолятора, они никак не сказываются на работе транзистора. Единственным минусом SOI является то, что приходится уменьшать глубину области эмиттер/коллектор, что прямо и непосредственно сказывается на увеличении ее сопротивления по мере сокращения толщины.

И наконец, третья причина, которая способствовала замедлению темпов роста частот – это низкая активность конкурентов на рынке. Можно сказать, каждый был занят своими делами. AMD занималась повсеместным внедрением 64-битных процессоров, для Intel это был период усовершенствования нового техпроцесса, отладки для увеличенная выхода годных кристаллов.

Начавшийся год должен принести нам большое количество новостей из области технологий, ведь именно в этом году обе компании должны перейти на технологические нормы 90 нм. Но это вовсе не означает нового стремительного роста частот процессоров, скорее наоборот. Сначала на рынке будет наблюдаться затишье: конкуренты начнут выпускать CPU по новым техпроцессам, но со старыми частотами. По мере освоения процесса производства начнется некоторый рост частоты чипов. Скорее всего, он будет не столь заметен как ранее. К концу 2004 года, когда выход годных кристаллов по 90-нм техпроцессу значительно повысится, компания Intel ожидает покорение вершины в 4 ГГц, а то и более. Процессоры компании AMD будут идти с некоторым традиционным отставанием по частоте, которое, в общем-то, не так сильно сказывается на производительности, как особенности микроархитектуры.

Итак, необходимость перехода на новые техпроцессы очевидна, но технологам это дается каждый раз все с большим трудом. Первые процессоры

Pentium (1993г) производились по техпроцессу 0,8 мкм, затем по 0,6 мкм. В 1995 году впервые для процессоров 6-го поколения был применен техпроцесс 0,35 мкм. В 1997 году он сменился на 0,25 мкм, а в 1999 – на 0,18 мкм. Современные процессоры выполняются по технологии 0,13 и 0,09 мкм, причем последняя была введена в 2004 году. Как видно, для этих техпроцессов соблюдается закон Мура, который гласит, что каждые два года частота кристаллов удваивается при увеличении количества транзисторов с них. С такими же темпами сменяется и техпроцесс. Правда, в дальнейшем "гонка частот" опередит этот закон. К 2006 году компания Intel планирует освоение 65-нм техпроцесса, а 2009 – 32-нм. Принцип закона Мура представлен на рисунке 1.

Как и обещал – подробный рассказ о том, как делают процессоры… начиная с песка. Все, что вы хотели знать, но боялись спросить)


Я уже рассказывал о том, «Где производят процессоры » и о том, какие «Трудности производства » на этом пути стоят. Сегодня речь пойдет непосредственно про само производство – «от и до».

Производство процессоров

Когда фабрика для производства процессоров по новой технологии построена, у нее есть 4 года на то, чтобы окупить вложенные средства (более $5млрд) и принести прибыль. Из несложных секретных расчетов получается, что фабрика должна производить не менее 100 работающих пластин в час.

Вкратце процесс изготовления процессора выглядит так: из расплавленного кремния на специальном оборудовании выращивают монокристалл цилиндрической формы. Получившийся слиток охлаждают и режут на «блины», поверхность которых тщательно выравнивают и полируют до зеркального блеска. Затем в «чистых комнатах» полупроводниковых заводов на кремниевых пластинах методами фотолитографии и травления создаются интегральные схемы. После повторной очистки пластин, специалисты лаборатории под микроскопом производят выборочное тестирование процессоров – если все «ОК», то готовые пластины разрезают на отдельные процессоры, которые позже заключают в корпуса.

Уроки химии

Давайте рассмотрим весь процесс более подробно. Содержание кремния в земной коре составляет порядка 25-30% по массе, благодаря чему по распространённости этот элемент занимает второе место после кислорода. Песок, особенно кварцевый, имеет высокий процент содержания кремния в виде диоксида кремния (SiO 2) и в начале производственного процесса является базовым компонентом для создания полупроводников.

Первоначально берется SiO 2 в виде песка, который в дуговых печах (при температуре около 1800°C) восстанавливают коксом:

Такой кремний носит название «технический » и имеет чистоту 98-99.9%. Для производства процессоров требуется гораздо более чистое сырье, называемое «электронным кремнием » - в таком должно быть не более одного чужеродного атома на миллиард атомов кремния. Для очистки до такого уровня, кремний буквально «рождается заново». Путем хлорирования технического кремния получают тетрахлорид кремния (SiCl 4), который в дальнейшем преобразуется в трихлорсилан (SiHCl 3):
Данные реакции с использованием рецикла образующихся побочных кремнийсодержащих веществ снижают себестоимость и устраняют экологические проблемы:
2SiHCl 3 SiH 2 Cl 2 + SiCl 4
2SiH 2 Cl 2 SiH 3 Cl + SiHCl 3
2SiH 3 Cl SiH 4 + SiH 2 Cl 2
SiH 4 Si + 2H 2
Получившийся в результате водород можно много где использовать, но самое главное то, что был получен «электронный» кремний, чистый-пречистый (99,9999999%). Чуть позже в расплав такого кремния опускается затравка («точка роста»), которая постепенно вытягивается из тигля. В результате образуется так называемая «буля» - монокристалл высотой со взрослого человека. Вес соответствующий - на производстве такая дуля весит порядка 100 кг.

Слиток шкурят «нулёвкой»:) и режут алмазной пилой. На выходе – пластины (кодовое название «вафля») толщиной около 1 мм и диаметром 300 мм (~12 дюймов; именно такие используются для техпроцесса в 32нм с технологией HKMG, High-K/Metal Gate). Когда-то давно Intel использовала диски диаметром 50мм (2"), а в ближайшем будущем уже планируется переход на пластины с диаметром в 450мм – это оправдано как минимум с точки зрения снижения затрат на производство чипов. К слову об экономии - все эти кристаллы выращиваются вне Intel; для процессорного производства они закупаются в другом месте.

Каждую пластину полируют, делают идеально ровной, доводя ее поверхность до зеркального блеска.

Производство чипов состоит более чем из трёх сотен операций, в результате которых более 20 слоёв образуют сложную трёхмерную структуру – доступный на Хабре объем статьи не позволит рассказать вкратце даже о половине из этого списка:) Поэтому совсем коротко и лишь о самых важных этапах.

Итак. В отшлифованные кремниевые пластины необходимо перенести структуру будущего процессора, то есть внедрить в определенные участки кремниевой пластины примеси, которые в итоге и образуют транзисторы. Как это сделать? Вообще, нанесение различных слоев на процессорную подложу это целая наука, ведь даже в теории такой процесс непрост (не говоря уже о практике, с учетом масштабов)… но ведь так приятно разобраться в сложном;) Ну или хотя бы попытаться разобраться.

Фотолитография

Проблема решается с помощью технологии фотолитографии - процесса избирательного травления поверхностного слоя с использованием защитного фотошаблона. Технология построена по принципу «свет-шаблон-фоторезист» и проходит следующим образом:
- На кремниевую подложку наносят слой материала, из которого нужно сформировать рисунок. На него наносится фоторезист - слой полимерного светочувствительного материала, меняющего свои физико-химические свойства при облучении светом.
- Производится экспонирование (освещение фотослоя в течение точно установленного промежутка времени) через фотошаблон
- Удаление отработанного фоторезиста.
Нужная структура рисуется на фотошаблоне - как правило, это пластинка из оптического стекла, на которую фотографическим способом нанесены непрозрачные области. Каждый такой шаблон содержит один из слоев будущего процессора, поэтому он должен быть очень точным и практичным.

Иной раз осаждать те или иные материалы в нужных местах пластины просто невозможно, поэтому гораздо проще нанести материал сразу на всю поверхность, убрав лишнее из тех мест, где он не нужен - на изображении выше синим цветом показано нанесение фоторезиста.

Пластина облучается потоком ионов (положительно или отрицательно заряженных атомов), которые в заданных местах проникают под поверхность пластины и изменяют проводящие свойства кремния (зеленые участки - это внедренные чужеродные атомы).

Как изолировать области, не требующие последующей обработки? Перед литографией на поверхность кремниевой пластины (при высокой температуре в специальной камере) наносится защитная пленка диэлектрика – как я уже рассказывал, вместо традиционного диоксида кремния компания Intel стала использовать High-K-диэлектрик. Он толще диоксида кремния, но в то же время у него те же емкостные свойства. Более того, в связи с увеличением толщины уменьшен ток утечки через диэлектрик, а как следствие – стало возможным получать более энергоэффективные процессоры. В общем, тут гораздо сложнее обеспечить равномерность этой пленки по всей поверхности пластины - в связи с этим на производстве применяется высокоточный температурный контроль.

Так вот. В тех местах, которые будут обрабатываться примесями, защитная пленка не нужна – её аккуратно снимают при помощи травления (удаления областей слоя для формирования многослойной структуры с определенными свойствами). А как снять ее не везде, а только в нужных областях? Для этого поверх пленки необходимо нанести еще один слой фоторезиста – за счет центробежной силы вращающейся пластины, он наносится очень тонким слоем.

В фотографии свет проходил через негативную пленку, падал на поверхность фотобумаги и менял ее химические свойства. В фотолитографии принцип схожий: свет пропускается через фотошаблон на фоторезист, и в тех местах, где он прошел через маску, отдельные участки фоторезиста меняют свойства. Через маски пропускается световое излучение, которое фокусируется на подложке. Для точной фокусировки необходима специальная система линз или зеркал, способная не просто уменьшить, изображение, вырезанное на маске, до размеров чипа, но и точно спроецировать его на заготовке. Напечатанные пластины, как правило, в четыре раза меньше, чем сами маски.

Весь отработанный фоторезист (изменивший свою растворимость под действием облучения) удаляется специальным химическим раствором – вместе с ним растворяется и часть подложки под засвеченным фоторезистом. Часть подложки, которая была закрыта от света маской, не растворится. Она образует проводник или будущий активный элемент – результатом такого подхода становятся различные картины замыканий на каждом слое микропроцессора.

Собственно говоря, все предыдущие шаги были нужны для того, чтобы создать в необходимых местах полупроводниковые структуры путем внедрения донорной (n-типа) или акцепторной (p-типа) примеси. Допустим, нам нужно сделать в кремнии область концентрации носителей p-типа, то есть зону дырочной проводимости. Для этого пластину обрабатывают с помощью устройства, которое называется имплантер - ионы бора с огромной энергией выстреливаются из высоковольтного ускорителя и равномерно распределяются в незащищенных зонах, образованных при фотолитографии.

Там, где диэлектрик был убран, ионы проникают в слой незащищенного кремния – в противном случае они «застревают» в диэлектрике. После очередного процесса травления убираются остатки диэлектрика, а на пластине остаются зоны, в которых локально есть бор. Понятно, что у современных процессоров может быть несколько таких слоев - в таком случае на получившемся рисунке снова выращивается слой диэлектрика и далее все идет по протоптанной дорожке - еще один слой фоторезиста, процесс фотолитографии (уже по новой маске), травление, имплантация… ну вы поняли.

Характерный размер транзистора сейчас - 32 нм, а длина волны, которой обрабатывается кремний - это даже не обычный свет, а специальный ультрафиолетовый эксимерный лазер - 193 нм. Однако законы оптики не позволяют разрешить два объекта, находящиеся на расстоянии меньше, чем половина длины волны. Происходит это из-за дифракции света. Как быть? Применять различные ухищрения - например, кроме упомянутых эксимерных лазеров, светящих далеко в ультрафиолетовом спектре, в современной фотолитографии используется многослойная отражающая оптика с использованием специальных масок и специальный процесс иммерсионной (погружной) фотолитографии.

Логические элементы, которые образовались в процессе фотолитографии, должны быть соединены друг с другом. Для этого пластины помещают в раствор сульфата меди, в котором под действием электрического тока атомы металла «оседают» в оставшихся «проходах» - в результате этого гальванического процесса образуются проводящие области, создающие соединения между отдельными частями процессорной «логики». Излишки проводящего покрытия убираются полировкой.

Финишная прямая

Ура – самое сложное позади. Осталось хитрым способом соединить «остатки» транзисторов - принцип и последовательность всех этих соединений (шин) и называется процессорной архитектурой. Для каждого процессора эти соединения различны – хоть схемы и кажутся абсолютно плоскими, в некоторых случаях может использоваться до 30 уровней таких «проводов». Отдаленно (при очень большом увеличении) все это похоже на футуристическую дорожную развязку – и ведь кто-то же эти клубки проектирует!

Когда обработка пластин завершена, пластины передаются из производства в монтажно-испытательный цех. Там кристаллы проходят первые испытания, и те, которые проходят тест (а это подавляющее большинство), вырезаются из подложки специальным устройством.

На следующем этапе процессор упаковывается в подложку (на рисунке – процессор Intel Core i5, состоящий из CPU и чипа HD-графики).

Привет, сокет!

Подложка, кристалл и теплораспределительная крышка соединяются вместе – именно этот продукт мы будем иметь ввиду, говоря слово «процессор». Зеленая подложка создает электрический и механический интерфейс (для электрического соединения кремниевой микросхемы с корпусом используется золото), благодаря которому станет возможным установка процессора в сокет материнской платы – по сути, это просто площадка, на которой разведены контакты от маленького чипа. Теплораспределительная крышка является термоинтерфейсом, охлаждающим процессор во время работы – именно к этой крышке будут примыкать система охлаждения, будь то радиатор кулера или здоровый водоблок.

Сокет (разъём центрального процессора) - гнездовой или щелевой разъём, предназначенный для установки центрального процессора. Использование разъёма вместо прямого распаивания процессора на материнской плате упрощает замену процессора для модернизации или ремонта компьютера. Разъём может быть предназначен для установки собственно процессора или CPU-карты (например, в Pegasos). Каждый разъём допускает установку только определённого типа процессора или CPU-карты.

На завершающем этапе производства готовые процессоры проходят финальные испытания на предмет соответствия основным характеристикам – если все в порядке, то процессоры сортируются в нужном порядке в специальные лотки – в таком виде процессоры уйдут производителям или поступят в OEM-продажу. Еще какая-то партия пойдет на продажу в виде BOX-версий – в красивой коробке вместе со стоковой системой охлаждения.

The end

Теперь представьте себе, что компания анонсирует, например, 20 новых процессоров. Все они различны между собой – количество ядер, объемы кэша, поддерживаемые технологии… В каждой модели процессора используется определенное количество транзисторов (исчисляемое миллионами и даже миллиардами), свой принцип соединения элементов… И все это надо спроектировать и создать/автоматизировать – шаблоны, линзы, литографии, сотни параметров для каждого процесса, тестирование… И все это должно работать круглосуточно, сразу на нескольких фабриках… В результате чего должны появляться устройства, не имеющие права на ошибку в работе… А стоимость этих технологических шедевров должна быть в рамках приличия… Почти уверен в том, что вы, как и я, тоже не можете представить себе всего объема проделываемой работы, о которой я и постарался сегодня рассказать.

Ну и еще кое-что более удивительное. Представьте, что вы без пяти минут великий ученый - аккуратно сняли теплораспределительную крышку процессора и в огромный микроскоп смогли увидеть структуру процессора – все эти соединения, транзисторы… даже что-то на бумажке зарисовали, чтобы не забыть. Как думаете, легко ли изучить принципы работы процессора, располагая только этими данными и данными о том, какие задачи с помощью этого процессора можно решать? Мне кажется, примерно такая картина сейчас видна ученым, которые пытаются на подобном уровне изучить работу человеческого мозга. Только если верить стэнфордским микробиологам, в одном человеческом мозге

Производство микросхем — весьма непростое дело, и закрытость этого рынка диктуется в первую очередь особенностями главенствующей в наши дни технологии фотолитографии. Микроскопические электронные схемы проецируются на кремниевую пластину через фотошаблоны, стоимость каждого из которых может достигать $200 000. А между тем для изготовления одного чипа требуется не меньше 50 таких масок. Добавьте к этому стоимость «проб и ошибок» при разработке новых моделей, и вы поймете, что производить процессоры могут только очень большие компании очень большими тиражами.

А что делать научным лабораториям и высокотехнологичным стартапам, которым необходимы нестандартные схемы? Как быть военным, для которых закупать процессоры у «вероятного противника» — мягко говоря, не комильфо?

Мы побывали на российском производственном участке голландской компании Mapper, благодаря которой изготовление микросхем может перестать быть уделом небожителей и превратится в занятие для простых смертных. Ну или почти простых. Здесь, на территории Технополиса «Москва» при финансовой поддержке корпорации «Роснано» производится ключевой компонент технологии Mapper — электронно-оптическая система.

Однако прежде чем разбираться в нюансах безмасочной литографии Mapper, стоит вспомнить основы обычной фотолитографии.

Неповоротливый свет

На современном процессоре Intel Core i7 может располагаться около 2 млрд транзисторов (в зависимости от модели), размер каждого из которых — 14 нм. В погоне за вычислительной мощностью производители ежегодно уменьшают размеры транзисторов и увеличивают их число. Вероятным технологическим пределом в этой гонке можно считать 5 нм: на таких расстояниях начинают проявляться квантовые эффекты, из-за которых электроны в соседних ячейках могут вести себя непредсказуемо.

Чтобы нанести на кремниевую пластину микроскопические полупроводниковые структуры, используют процесс, похожий на работу с фотоувеличителем. Разве что цель у него обратная — сделать изображение как можно меньше. Пластину (или защитную пленку) покрывают фоторезистом — полимерным фоточувствительным материалом, который меняет свои свойства при облучении светом. Требуемый рисунок чипа экспонируют на фоторезист через маску и собирающую линзу. Напечатанные пластины, как правило, в четыре раза меньше, чем маски.


Такие вещества, как кремний или германий, имеют по четыре электрона на внешнем энергетическом уровне. Они образуют красивые кристаллы, похожие на металл. Но, в отличие от металла, они не проводят электрический ток: все их электроны задействованы в мощных ковалентных связях и не могут двигаться. Однако все меняется, если добавить к ним немного донорной примеси из вещества с пятью электронами на внешнем уровне (фосфора или мышьяка). Четыре электрона вступают в связь с кремнием, а один остается свободным. Кремний с донорной примесью (n-типа) — неплохой проводник. Если добавить к кремнию акцепторную примесь из вещества с тремя электронами на внешнем уровне (бор, индий), аналогичным образом образуются «дырки», виртуальный аналог положительного заряда. В таком случае речь идет о полупроводнике p-типа. Соединив проводники p- и n-типа, мы получим диод — полупроводниковый прибор, пропускающий ток только в одном направлении. Комбинация p-n-p или n-p-n дает нам транзистор — через него ток протекает только в том случае, если на центральный проводник подается определенное напряжение.

Свои коррективы в этот процесс вносит дифракция света: луч, проходя через отверстия маски, немного преломляется, и вместо одной точки экспонируется серия концентрических кругов, как от брошенного в омут камня. К счастью, дифракция находится в обратной зависимости от длины волны, чем и пользуются инженеры, применяя свет ультрафиолетового диапазона с длиной волны 195 нм. Почему не еще меньше? Просто более короткая волна не будет преломляться собирающей линзой, лучи будут проходить насквозь, не фокусируясь. Увеличить собирающую способность линзы тоже нельзя — не позволит сферическая аберрация: каждый луч будет проходить оптическую ось в своей точке, нарушая фокусировку.

Максимальная ширина контура, которую можно отобразить с помощью фотолитографии, — 70 нм. Чипы с более высоким разрешением печатают в несколько приемов: наносят 70-нанометровые контуры, протравливают схему, а затем экспонируют следующую часть через новую маску.

Сейчас в разработке находится технология фотолитографии в глубоком ультрафиолете, с применением света с экстремальной длиной волны около 13,5 нм. Технология предполагает использование вакуума и многослойных зеркал с отражением на основе межслойной интерференции. Маска тоже будет не просвечивающим, а отражающим элементом. Зеркала лишены явления преломления, поэтому могут работать со светом любой длины волны. Но пока это лишь концепция, которую, возможно, станут применять в будущем.

Как сегодня делают процессоры


Идеально отполированную круглую кремниевую пластину диаметром 30 см покрывают тонким слоем фоторезиста. Равномерно распределить фоторезист помогает центробежная сила.


Будущая схема экспонируется на фоторезист через маску. Этот процесс повторяется многократно, потому что из одной пластины получается множество чипов.


Та часть фоторезиста, которая подверглась ультрафиолетовому излучению, становится растворимой и с легкостью удаляется с помощью химикатов.


Участки кремниевой пластины, не защищенные фоторезистом, подвергаются химическому травлению. На их месте образуются углубления.


На пластину вновь наносят слой фоторезиста. На этот раз с помощью экспонирования обнажают те участки, которые подвергнутся ионной бомбардировке.


Под воздействием электрического поля ионы примесей разгоняются до скоростей более 300 000 км/ч и проникают в кремний, придавая ему свойства полупроводника.


После удаления остатков фоторезиста на пластине остаются готовые транзисторы. Сверху наносят слой диэлектрика, в котором по все той же технологии протравливают отверстия под контакты.


Пластину помещают в раствор сульфата меди, и с помощью электролиза на нее наносят проводящий слой. Затем весь слой снимают шлифовкой, а контакты в отверстиях остаются.


Контакты соединяются многоэтажной сетью из металлических «проводов». Количество «этажей» может достигать 20, а общая схема проводников называется архитектурой процессора.


Только теперь пластину распиливают на множество отдельных чипов. Каждый «кристалл» тестируют и лишь затем устанавливают на плату с контактами и накрывают серебряной крышкой-радиатором.

13 000 телевизоров

Альтернативой фотолитографии считают электролитографию, когда экспонируют не светом, а электронами, и не фото-, а электрорезист. Электронный пучок легко фокусируется в точку минимального размера, вплоть до 1 нм. Технология напоминает электронно-лучевую трубку телевизора: сфокусированный поток электронов отклоняется управляющими катушками, рисуя изображение на кремниевой пластине.

До последнего времени эта технология не могла конкурировать с традиционным методом из-за низкой скорости. Чтобы электрорезист среагировал на облучение, он должен принять определенное количество электронов на единицу площади, поэтому один луч может экспонировать в лучшем случае 1 см2/ч. Это приемлемо для единичных заказов от лабораторий, однако неприменимо в промышленности.

К сожалению, решить проблему, увеличив энергию луча, невозможно: одноименные заряды отталкиваются, поэтому при увеличении тока пучок электронов становится шире. Зато можно увеличить количество лучей, экспонируя несколько зон одновременно. И если несколько — это 13 000, как в технологии Mapper, то, согласно расчетам, можно печатать уже десять полноценных чипов в час.


Конечно, объединить в одном устройстве 13 000 электронно-лучевых трубок было бы невозможно. В случае Mapper излучение из источника направляется на коллиматорную линзу, которая формирует широкий параллельный пучок электронов. На его пути встает апертурная матрица, которая превращает его в 13 000 отдельных лучей. Лучи проходят через матрицу бланкеров — кремниевую пластину с 13 000 отверстий. Около каждого из них располагается отклоняющий электрод. Если на него подается ток, электроны «промахиваются» мимо своего отверстия, и один из 13 000 лучей выключается.

Пройдя бланкеры, лучи направляются к матрице дефлекторов, каждый из которых может отклонять свой луч на пару микронов вправо или влево относительно движения пластины (так что Mapper все же напоминает 13 000 кинескопов). Наконец, каждый луч дополнительно фокусируется собственной микролинзой, после чего направляется к электрорезисту. На сегодняшний день технология Mapper прошла тестирование во французском научно-исследовательском институте микроэлектроники CEA-Leti и в компании TSMC, которая производит микропроцессоры для ведущих игроков рынка (в том числе и для Apple iPhone 6S). Ключевые компоненты системы, включая кремниевые электронные линзы, производятся на московском заводе.

Технология Mapper обещает новые перспективы не только исследовательским лабораториям и мелкосерийным (в том числе военным) производствам, но и крупным игрокам. В настоящее время для тестирования прототипов новых процессоров приходится изготавливать точно такие же фотошаблоны, как для массового производства. Возможность относительно быстрого прототипирования схем обещает не только снизить стоимость разработки, но и ускорить прогресс в этой области. Что в конечном счете на руку массовому потребителю электроники, то есть всем нам.

Производство процессоров

Основным химическим элементом, используемым при производстве процессоров, является кремний, самый распространенный элемент на земле после кислорода. Это базовый компонент, из которого состоит прибрежный песок (кремниевый диоксид); однако в таком виде он не подходит для производства микросхем. Чтобы использовать кремний в качестве материала для изготовления ми

кросхемы, необходим длительный технологический процесс, который начинается с получения кристаллов чистого кремния по методу Жокральски (Czochralski). По этой технологии сырье, в качестве которого используется в основном кварцевая порода, преобразуется в электродуговых печах в металлургический кремний. Затем для удаления примесей полученный кремний плавится, дистиллируется и кристаллизуется в виде полупроводниковых слитков с очень высокой степенью чистоты (99,999999%). После механической нарезки слитков полученные заготовки загружаются в кварцевые тигли и помещаются в электрические сушильные печи для вытяжки кристаллов, где плавятся при температуре более 2500° по Фаренгейту. Для того чтобы предотвратить образование примесей, сушильные печи обычно устанавливаются на толстом бетонном основании. Бетонное основание, в свою очередь, устанавливается на амортизаторах, что позволяет значительно уменьшить вибрацию, которая может негативно сказаться на формировании кристалла. Как только заготовка начинает плавиться, в расплавленный кремний помещается небольшой, медленно вращающийся затравочный кристалл. По мере удаления затравочного кристалла от поверхности расплава вслед за ним вытягиваются кремниевые нити, которые, затвердевая, образуют кристаллическую структуру. Изменяя скорость перемещения затравочного кристалла (10-40 мм в час) и температуру (примерно 2500° по Фаренгейту), получаем кристалл кремния малого начального диаметра, который затем наращивается до нужной величины. В зависимости от размеров изготавливаемых микросхем, выращенный кристалл достигает 8-12 дюймов (20-30 мм) в диаметре и 5 футов (около 1,5 м) в длину.

Вес выращенного кристалла достигает нескольких сотен фунтов. Заготовка вставляется в цилиндр диаметром 200 мм (текущий стандарт), часто с плоской вырезкой на одной стороне для точности позиционирования и обработки. Затем каждая заготовка разрезается алмазной пилой более чем на тысячу круговых подложек толщиной менее миллиметра (рис2). После этого подложка полируется до тех пор, пока ее поверхность не станет зеркально гладкой. В производстве микросхем используется процесс, называемый фотолитографией. Технология этого процесса такова: на полупроводник, служащий основой чипа, один за другим наносятся слои разных материалов; таким образом, создаются транзисторы, электронные схемы и проводники (дорожки), по которым распространяются сигналы. В точках пересечения специфических схем можно создать транзистор или переключатель (вентиль). Фотолитографический процесс начинается с покрытия подложки слоем полупроводника со специальными добавками, затем этот слой покрывается фоторезистивным химическим составом, а после этого изображение микросхемы проектируется на ставшую теперь светочувствительной поверхность. В результате добавления к кремнию (который, естественно, является диэлектриком) донорных примесей получается полупроводник. Проектор использует специальный фотошаблон (маску), который является, по сути, картой данного конкретного слоя микросхемы. (Микросхема процессора Pentium III содержит пять слоев; другие современные процессоры могут иметь шесть или больше слоев. При разработке нового процессора потребуется спроектировать фотошаблон для каждого слоя микросхемы.) Проходя через первый фотошаблон, свет фокусируется на поверхности подложки, оставляя отпечаток изображения этого слоя. Затем специальное устройство несколько перемещает подложку, а тот же фотошаблон (маска) используется для печати следующей микросхемы. После того как микросхемы будут отпечатаны на всей подложке, едкая щелочь смоет те области, где свет воздействовал на фоторезистивное вещество, оставляя отпечатки фотошаблона (маски) конкретного слоя микросхемы и межслойные соединения (соединения между слоями), а также пути прохождения сигналов. После этого на подложку наносится другой слой полупроводника и вновь немного фоторезистивного вещества поверх него, затем используется следующий фотошаблон (маска) для создания очередного слоя микросхемы. Таким способом слои наносятся один поверх другого до тех пор, пока не будет полностью изготовлена микросхема.

Финальная маска добавляет так называемый слой металлизации, используемый для соединения всех транзисторов и других компонентов. В большинстве микросхем для этого слоя используют алюминий, но в последнее время стали использовать медь. Например, при производстве процессоров компании AMD на фабрике в Дрездене используется медь. Это объясняется лучшей проводимостью меди по сравнению с алюминием. Однако для повсеместного использования меди необходимо решить проблему ее коррозии.

Когда обработка круговой подложки завершится, на ней будет фотоспособом отпечатано максимально возможное количество микросхем. Микросхема обычно имеет форму квадрата или прямоугольника, по краям подложки остаются некоторые "свободные" участки, хотя производители стараются использовать каждый квадратный миллиметр поверхности. Промышленность переживает очередной переходный период в производстве микросхем. В последнее время наблюдается тенденция к увеличению диаметра подложки и уменьшению общих размеров кристалла, что выражается в уменьшении габаритов отдельных схем и транзисторов и расстояния между ними. В конце 2001 и начале 2002 года произошел переход с 0,18- на 0,13-микронную технологию, вместо алюминиевых межкристальных соединений начали использовать медные, при этом диаметр подложки увеличился с 200 мм (8 дюймов) до 300 мм (12 дюймов). Увеличение диаметра подложки до 300 мм позволяет удвоить количество изготавливаемых микросхем. Использование 0,13-микронной технологии позволяет разместить на кристалле большее количество транзисторов при сохранении его приемлемых размеров и удовлетворительного процента выхода годных изделий. Это означает сохранение тенденции увеличения объемов кэш-памяти, встраиваемой в кристалл процессора. В качестве примера того, как это может повлиять на параметры определенной микросхемы, рассмотрим процессор Pentium 4.

Диаметр стандартной подложки, используемой в полупроводниковой промышленности в течение уже многих лет, равен 200 мм или приблизительно 8 дюймов(рис). Таким образом, площадь подложки достигает 31 416 мм2. Первая версия процессора Pentium 4, изготовленного на 200-миллиметровой подложке, содержала в себе ядро Willamette, созданное на основе 0,18-микронной технологии с алюминиевыми контактными соединениями, расположенными на кристалле площадью около 217 мм2. Процессор содержал в себе 42 млн. транзисторов. На 200-миллиметровой (8-дюймовой) подложке могло разместиться до 145 подобных микросхем. Процессоры Pentium 4 с ядром Northwood, созданные по 0,13-микронной технологии, содержат в себе медную монтажную схему, расположенную на кристалле площадью 131 мм2. Этот процессор содержит уже 55 млн. транзисторов. По сравнению с версией Willamette ядро Northwood имеет удвоенный объем встроенной кэш-памяти второго уровня (512 Кбайт), что объясняет более высокое количество содержащихся транзисторов. Использование 0,13-микронной технологии позволяет уменьшить размеры кристалла примерно на 60%, что дает возможность разместить на той же 200-миллиметровой (8-дюймовой) подложке до 240 микросхем. Как вы помните, на этой подложке могло разместиться только 145 кристаллов Willamette. В начале 2002 года Intel приступила к производству кристаллов Northwood на большей, 300-миллиметровой подложке площадью 70 686 мм2. Площадь этой подложки в 2,25 раза превышает площадь 200-миллиметровой подложки, что позволяет практически удвоить количество микросхем, размещаемых на ней. Если говорить о процессоре Pentium 4 Northwood, то на 300-миллиметровой подложке можно разместить до 540 микросхем. Использование современной 0,13-микронной технологии в сочетании с подложкой большего диаметра позволило более чем в 3,7 раза увеличить выпуск процессоров Pentium 4. Во многом благодаря этому современные микросхемы зачастую имеют более низкую стоимость, чем микросхемы предыдущих версий. В 2003 году полупроводниковая промышленность перешла на 0,09-микронную технологию. При вводе новой поточной линии не все микросхемы на подложке будут годными. Но по мере совершенствования технологии производства данной микросхемы возрастет и процент годных (работающих) микросхем, который называется выходом годных. В начале выпуска новой продукции выход годных может быть ниже 50%, однако ко времени, когда выпуск продукта данного типа прекращается, он составляет уже 90%. Большинство изготовителей микросхем скрывают реальные цифры выхода годных, поскольку знание фактического отношения годных к бракованным может быть на руку их конкурентам. Если какая-либо компания будет иметь конкретные данные о том, как быстро увеличивается выход годных у конкурентов, она может скорректировать цены на микросхемы или спланировать производство так, чтобы увеличить свою долю рынка в критический момент. Например, в течение 1997 и 1998 годов у AMD был низкий выход годных, и компания утратила значительную долю рынка. Несмотря на то что AMD предпринимала усилия для решения этой проблемы, ей все же пришлось подписать соглашение, в соответствии с которым IBM Microelectronics должна была произвести и поставить AMD некоторые ею же разработанные микропроцессоры. По завершении обработки подложки специальное устройство проверяет каждую микросхему на ней и отмечает некачественные, которые позже будут отбракованы. Затем микросхемы вырезаются из подложки с помощью высокопроизводительного лазера или алмазной пилы. Когда кристаллы будут вырезаны из подложек, каждая микросхема испытывается отдельно, упаковывается и снова проходит тест. Процесс упаковки называется соединением: после того как кристалл помещается в корпус, специальная машина соединяет тонюсенькими золотыми проводами выводы кристалла со штырьками (или контактами) на корпусе микросхемы. Затем микросхема упаковывается в специальный пакет - контейнер, который, по существу, предохраняет ее от неблагоприятных воздействий внешней среды. После того как выводы кристалла соединены со штырьками на корпусе микросхемы, а микросхема упакована, выполняется заключительное тестирование, чтобы определить правильность функционирования и номинальное быстродействие. Разные микросхемы одной и той же серии зачастую обладают различным быстродействием. Специальные тестирующие приборы заставляют каждую микросхему работать в различных условиях (при разных давлениях, температурах и тактовых частотах), определяя значения параметров, при которых прекращается корректное функционирование микросхемы. Параллельно определяется максимальное быстродействие; после этого микросхемы сортируются по быстродействию и распределяются по приемникам: микросхемы с близкими параметрами попадают в один и тот же приемник. Например, микросхемы Pentium 4 2,0А, 2,2, 2,26, 2,24 и 2,53 ГГц представляют собой одну и ту же микросхему, т. е. все они были напечатаны с одного и того же фотошаблона, кроме того, сделаны они из одной и той же заготовки, но в конце производственного цикла были отсортированы по быстродействию.